
Exercise 6

Static versus non-static

By the end of this exercise you will be able to

• Understand the difference that is made by the static modifier.

• Call a static method.

• Access a static property.

Introduction

What difference does the static modifier make? From the previous exercises you will be familiar
with its use in the main method but when else can it be used?

The purpose of this exercise is to show you what the static concept means in Java. In this
exercise, there is one example which shows you what happens if you label all your methods and
properties as static and another example which shows you what happens when just one property
is static and the rest non-static.

Questions

1. Fetch the file CartoonTest.java, which contains some classes designed to represent the
cartoon characters from the TV series The Flintstones.

2. Add some code to the main method to call Fred Flintstone’s displayMe method.

HINT: Remember that to call a normal (non-static) method, you put the name of the object
before the name of the method. To call a static method, you put put name of the class in
front of the method.

3. Add some code to the main method to print out Barney Rubble’s favourite colour without
using Barney Rubble’s displayMe method.

HINT: To access a static property, put the name of the class in front of the property.

4. In the three Flintstone character classes shown above every method and property was static,
mainly to show you an example of using the static keyword. When everything is static you
don’t need to create any objects, instead you can “talk” to the classes directly.

We will now re-work the previous example by merging the three Flintstone classes into one
CartoonCharacter class:

class CartoonCharacter {

// Properties of the class...
private String name;
private String favouriteColour;
private int favouriteNumber;

1



// Constructor of the class...
public CartoonCharacter(String aName, String aColour, int aNumber) {

name = aName;
favouriteColour = aColour;
favouriteNumber = aNumber;

}

// Methods of the class...
public void displayMe() {

System.out.println("Hello, my name is " + name);
System.out.println("my favourite colour is " + favouriteColour);
System.out.println("and my favourite number is " + favouriteNumber);

}
}

The code for this class is contained within the file CartoonCharacter.java which you shoul
fetch now. Delete all of the code in the main method of CartoonTest.java and add three
lines of code to construct three CartoonCharacter objects called Fred Flintstone, Wilma
Flintstone and Barney Rubble.

5. Call displayMe method of class CartoonCharacter for each of the objects you created in
the previous question.

6. Add a line of code to the main method to print out the favourite colour of the Barney Rubble
object that you created in question 4.

HINT: Since the favouriteColour property of the CartoonCharacter class is in a different
class from the main method, you will need to change it from private to public.

7. In the questions so far in this exercise, you have seen an example where static was used but
the example was quite artificial because we then saw how we could re-work it so that nothing
was static. This question will show an example where static is genuinely useful.

We would like to keep a record of how many CartoonCharacter objects we have created.
To achieve this, add a public static int property called count to the CartoonCharacter
class.

In the CartoonCharacter constructor, add a line that increments the value of count.

Finally, at the end of the main method, add a line to print out the value of count, which
should be 3 when you run the program.

Why must count be a static property for it to properly count the number of cartoon char-
acters created? Try removing the static keyword and seeing what happens.

8. Another use for static is for constants. Since the value of a constant is never changed, you
might as well have one value for the entire class rather than a different value for each object.

An example of this is the PI property of the Math class which stores the well-known number
3.14159. . . from mathematics. Add some code to the main method to print out the PI
property to the screen.

2


