
Exercise 14

Interfaces

By the end of this exercise you will be able to

• Use interfaces as a solution to the problem of multiple inheritance.

• Understand how an interface is similar to an abstract class with all methods abstract and
no properties except static constants.

Introduction

Consider the following UML diagram.

LandVehicle
numWheels
drive()

maxPassengers
name

Hovercraft

enterLand()
enterSea()

Jeep

soundHorn()

SeaVessel
displacement
launch()

Frigate

fireGun()

Vehicle

maxSpeed

The Hovercraft class shown in the diagram inherits from both LandVehicle and SeaVessel
since the hover-craft is in the rather unique position of being able to travel on land and sea. The
Hovercraft class cannot be expressed in Java since Java does not have the facility for multiple
inheritance. All other classes in the diagram use only single inheritance and so they can be
expressed in Java.

One of the problems with multiple inheritance is in deciding what to do with properties in a class
like Vehicle that is an indirect superclass of Hovercraft in two different ways, via LandVehicle
and via SeaVessel. The hover-craft in being able to drive on land and sea might have two different
maximum speeds, one for land travel and the other for sea travel. This leads to a problem of what
should be the appropriate value for the maxSpeed property of Hovercraft objects? We could
set maxSpeed to be the maximum of the two speed values but then this might badly affect the
behaviour of the drive method which, because it is defined in the LandVehicle class, might

1



assume that the value of maxSpeed is the maximum speed attainable on land. A similar problem
arises with the launch method.

Another approach would be for the Hovercraft class to possess two separate maxSpeed prop-
erties, one for the maximum speed on land and the other for the maximum speed on the sea. The
C++ language gives the programmer a choice between having one or two copies of maxSpeed with
the option of using “virtual” inheritance rather than “normal” inheritance, whereas Java avoids
this extra complexity by not allowing multiple inheritance.

So that the Java programmer is not disadvantaged by the lack of multiple inheritance, Java
has the interface feature, which allows for a kind of multiple inheritance involving interfaces,
without the complexity of multiple inheritance of classes that is present in languages like C++.
Below left is a diagram showing how interfaces relate to the Java concepts of classes and objects,
that you should already be familiar with. Below right is a diagram showing the equivalent concepts
in C++.

A class
can implement
one or more
interfaces.

An interface
can extend
one or more
other interfaces.

An object
is an instance
of a class.

A class
can extend
another class.

class

object

An object
is an instance
of a class.

interface

Java C++

class

object

A class

other classes.

can inherit from
one or more

The diagram shows that in a sense interfaces are a “higher level concept” than classes, since
you can never create an instance of an interface, only instances of classes that implement that
interface. Interfaces have no constructors.

The most important feature of interfaces is that a class can implement more than one interface.
Interfaces are limited in two respects. Firstly, they are not allowed to have any properties except
static constants, and secondly the methods of an interface must be defined without bodies, like
abstract methods. These two limitations prevent interfaces from suffering from the problem that
occurred with the maxSpeed property in the previous UML diagram.

We can re-work the previous UML diagram into something that can be expressed within the
Java language by replacing the classes Vehicle, LandVehicle and SeaVessel with interfaces
IsVehicle, IsLandVehicle and IsSeaVessel, respectively. The dotted arrows in the next UML
diagram indicate classes implementing interfaces.

2



Frigate

fireGun()

Jeep

soundHorn()

Hovercraft

enterLand()
enterSea()

setDisplacement(int)
getDisplacement()

launch()

getNumWheels()
setNumWheels(int)
drive()

IsSeaVesselIsLandVehicle
<<interface>> <<interface>>

getName()
setName(String)
getMaxPassengers()
setMaxPassengers(int)
getMaxSpeed()
setMaxSpeed(int)

IsVehicle
<<interface>>

Note that the Hovercraft class implements both the IsLandVehicle and IsSeaVessel inter-
faces, rather than inheriting from two classes which is not allowed in Java.

Since an interface is not allowed to have any properties except static constants, we have replaced
the properties that existed in the classes Vehicle, LandVehicle and SeaVessel with “getter” and
“setter” methods. That is to say that, for each property X, there is now a pair of methods getX
and setX. A getX, setX pair of public methods in a class is logically equivalent for users of the
class to a public property called X.

Since the methods of the interfaces are defined without bodies, they are defined in the classes
Jeep, Hovercraft and Frigate that implement the three interfaces.

Questions

1. Fetch the file InterTest.javawhich contains the program code for the UML diagram above.

2. By copying the pattern from the other interfaces in this file, write an interface IsEmergency
which extends no other interface and contains just one method soundSiren which takes no
arguments and returns no value.

3. Write a class PoliceCar that implements the IsEmergency and IsLandVehicle interfaces.

4. In addition to the methods you have written for the PoliceCar class, think of a new method
or property that police cars have and add it to the class.

5. Add the PoliceCar class and the IsEmergency interface to the second UML diagram. Show
all methods and properties.

6. Construct a PoliceCar object and add it to the array myArray in the main method.

3



7. By copying the pattern for the existing code inside the for loop, add some code that tests
the array elements to see if they are instances of classes that implement the IsEmergency
interface and if so, calls the soundSiren method.

NOTE: In an expression like:

if (myArray[i] instanceof IsLandVehicle) {

we are testing whether or not the object referenced by myArray[i] is an instance of a class
that implements the IsLandVehicle interface. Remember from the introduction that it is
technically not possible to have an object being an instance of an interface. The name of
the instanceof operator is a bit misleading in the case of interfaces.

4


