
Part 1/3 of a Ph.D. Thesis

By Davin Pearson

Eleventh Edition

The GNU Java Training Wheels
programming language

Java programming language
for a simplified version of the

The GNU Java Training Wheels
programming language for a

simplified version of the Java
programming language.

Part 1/3 of a A Ph.D. thesis

Eleventh edition c©2018 Davin Max Pearson

January 17, 2019

Abstract

This book is about how to add a preprocessor to the Java language to turbo-
charge its performance and to create a new programming language called GNU
Java Training Wheels or J.T.W. for short. Both expressiveness and efficiency can
be improved using preprocessor languages. J.T.W. has been created specifically for
novice Java programmers who want to learn Java. In particular Pascal-style begin
. . . end constructs are supported instead of Java’s { . . . } construct, which makes
J.T.W. code much more readable than the equivalent Java code. J.T.W. translates
to Java in a natural and straightforward manner so it is easy for J.T.W. program-
mers to learn Java. J.T.W. is supported by easy to understand error messages so
it is easy to debug J.T.W. code. For many reasons you might prefer to code in
J.T.W. rather than Java. Experienced programmers will find J.T.W. useful too.
Emacs Lisp is used as the preprocessor for the Java and C++ languages because
it is powerful enough for my needs and it is free software. That is to say free as
in free speech and not free beer. Lisp is a higher level language than Java and
is powerful enough to render obsolete blocks of tiresome repetitive boilerplate code
that dominates code written in Java. A small collection of d-defmacros have been
provided for you to deploy in your client code. If you are especially clever, you can
write your own Emacs Lisp d-defmacros to replace blocks of tiresome repetitive
boilerplate code in Java. The idea for eliminating tiresome repetitive boilerplate
code comes from Peter Seibel’s 2005 book [Sei05] Practical Common Lisp which
devotes an entire chapter (chapter 9) to eliminating tiresome repetitive boilerplate
code from Common Lisp code.

Released under the GNU Free Documentation License]1

Published by lulu.com in association with davinpearson.com .

ISBN: 978-0-244-348786

1www.gnu.org/copyleft/fdl.html

http://www.gnu.org/copyleft/fdl.html
http://lulu.com
http://davinpearson.com
http://www.gnu.org/copyleft/fdl.html

For Dorothy

4

Contents

1 Introduction 11

2 The J.T.W. language 13
2.1 Why learn to use J.T.W.? . 13
2.2 GNU Emacs as a development environment . 14

2.2.1 Why use GNU Emacs as your development environment? 14
2.2.2 Installing GNU Emacs . 14

2.3 Installing the installer module for c++2lisp++2c++ 15
2.3.1 Uninstalling c++2lisp++2c++ . 16

2.4 Introducing J.T.W. keywords . 16
2.5 Your first program . 17

2.5.1 Building J.T.W. into Java and running class files 17
2.6 J.T.W. Tutorials . 18

2.6.1 Tutorial 1 . 19
2.6.2 Tutorial 2 . 22
2.6.3 Tutorial 3 . 23
2.6.4 Tutorial 4 . 26
2.6.5 Tutorial 5 . 27
2.6.6 Tutorial 6 . 30
2.6.7 Tutorial 7 . 31
2.6.8 Tutorial 8 . 34
2.6.9 Tutorial 9 . 40
2.6.10 Tutorial 10 . 47
2.6.11 Tutorial 11 . 50
2.6.12 Tutorial 12 . 52
2.6.13 Tutorial 13 . 54
2.6.14 Tutorial 14 . 56
2.6.15 Tutorial 15 . 58
2.6.16 Tutorial 16 . 62
2.6.17 Tutorial 17 . 66

2.7 Proofs of concept for the J.T.W language . 68
2.7.1 Proof of concept #1: A small collection of d-defmacros for your use in

client code . 68
2.7.2 Proof of concept #2: A superfor macro . 78
2.7.3 Proof of concept #3: File inclusion . 85

2.8 Java/J.T.W./C++ coding preferences . 87
2.9 Parenthesis and squigglies { . . . } instead of begin . . . end 88
2.10 Troubleshooting J.T.W. code . 88
2.11 Mapping from J.T.W. to Java . 90

2.11.1 Choosing a preprocessor language for J.T.W. 90
2.11.2 Piping the output of javac and java . 91
2.11.3 The GNU Makefile for building *.java files and *.class files 91

5

6 CONTENTS

2.12 Elisp code for editing *.jtw files . 92
2.13 Translator *.jtw to *.class Elisp source code . 102

2.13.1 jtw-build-java.el Elisp source code . 102
2.13.2 jtw-javac.el Elisp source code . 102
2.13.3 jtw-java.el Elisp source code . 105

2.14 An idiom for constructors in Java and C++ . 109
2.15 Interfaces in Java and J.T.W. 110
2.16 Packages in Java and J.T.W. 111

2.16.1 Package visibility . 111
2.16.2 Moving a class into a package . 113
2.16.3 Moving a class into a sub-package . 115
2.16.4 Importing a package . 116
2.16.5 Importing a package from another package 116
2.16.6 Modifying the Makefile to build a class that calls other class(es) 117
2.16.7 Running javadoc on a package . 118

2.17 Passwords for the J.T.W. tutorial answers . 118

3 J.T.W. Software License 119

Preface

Preface to the eleventh edition

Split my book from one book into two separate books, The Java Training Wheels programming
language and Building C++ Preprocessors: Using Lisp++ for Efficient and Expressive Programing

Preface to the tenth edition

Removed the C++ source code for the libd library because C++ is not supported by this version
(and future versions) Added a new section §?? called A solution to the first problem. Added a
new section ?? called Proof of concept 1: A small collection of d-defmacros for your use in your
Lisp++ client code. Also fontified all occurrences of private foo in the face “prvt”, short for
private.

Preface to the ninth edition

Fixed numerous typographical errors. Changed the link of my large files links from

davinpearson.com/binaries/large-files-links.html

to

davinpearson.com/binaries

so that uploads to this website are displayed by default without the need to update the file
large-files-links.html.

Preface to the eighth edition

Changed the save names for classes that begin with an initial capital letter. This overcomes
Microsoft Windows’ limitation in its filenames in how it cannot have two files with the same
name, only different in case, e.g. foo and Foo. Therefore a class X will now reside in files called
X.lisp++ and will be built into C++ source files X.h++, X.ch++ and X.c++. That way a
class called x can reside in a file called x.lisp++ and will be built into files called x.h++, x.ch++
and x.c++ and Windows won’t complain about three pairs of files different only in case. Actually

http://davinpearson.com/binaries/large-files-links.html
http://davinpearson.com/binaries

CONTENTS 7

instead of complaining, Windows silently overwrites one of each pair of files with the other, which is
hardly ideal behaviour. This scheme of things works equally well in GNU/Linux but is superfluous
in this case.

Preface to the seventh edition

Added syntax highlighting to the following textual elements:

NOTE: I am a note

COOL: I am a cool note

and similar textual elements. Added the following target to the manual’s Makefile in §2.11.3 that
was missing from earlier editions:

build-class-db:

@echo STRINGBGFG("* Stage 0 : Building class database")

emacs --batch --eval STRINGBGFG("(setq dir \"$(PREFIX)/share/emacs/site-lisp/dlisp/\")") \
--load $(PREFIX)/share/emacs/site-lisp/dlisp/jtw-build-class-db.el --funcall doit

clean: build-class-db

Added section §?? on installing a C/C++ compiler.

Preface to the sixth edition

Put back sections §?? and §?? that were accidentally removed from the previous edition. In §2.16.4
removed the fontification of the word main → main. Also changed \begin{ enumerate } . . .

\end{ enumerate } → \begin{ itemize } . . . \end{ itemize } in section §2.10. Centralised the
diagrams in Figures ??, ?? and ??.

Preface to the fifth edition

Upped the number of lines of code written from 53,000→ 54,000. Moved An idiom for construc-
tors from §?? to §2. Also updated the code to reflect this change. Expanded the section in §??.
Removed the section Debugging crappyness of Lisp++ since it no longer applies.

Preface to the fourth edition

Added a new section Virtual Methods, see §??. Added a new section Run Time Type Inquiry,
see §??. Clipped extra long lines in the code listing in §2.7.2. Renamed methods in §?? from
x method1 → foo method1 etc. Corrected the following hyperlink in §?? davinpearson.com/binaries/large-files-size.html

→ davinpearson.com/binaries/large-files-links.html Improved the diagram in Figure 2.1.

Preface to the third edition

Added support for inline functions and methods and documentation of the cinline keyword.
See §?? for more information. Fixed the following bug in the documentation. See §2.16.4.

A → pkg.inner.A

Upped the lines of Emacs Lisp source code written count from 41,000→ 53,000 lines of code. I
now count experimental code as well as actively used code to get the higher value for the number
of lines of code written. This bumped up the number of lines of code by over 6,000.

http://davinpearson.com/binaries/large-files-size.html
http://davinpearson.com/binaries/large-files-links.html

8 CONTENTS

Preface to the second edition

Removed the extraneous large source code file: Othello.lisp++ (1,000+ lines of code) from the
first edition of my book. Updated the lines of Emacs Lisp source code written count from 38,000
→ 41,000 lines of code.

Preface to the first edition

Wrote this book using the LATEX document-markup system, specifically pdfTex Version 3.1415926-
2.5-1.40.14 (TeX Live 2013/Debian). Also used the program xfig for drawing diagrams. Used the
following Emacs Lisp code for syntax highlighting the various code language buffers, using LATEX’s
\color{color name}{text to colourise} and \colorbox{color name}{text to colourise}.

davin.50webs.com/research/2010/d-latexize7.el.html

Executed d-latexize.el by issuing the following shell command:

emacs --batch --eval STRINGBGFG("(setq *target* \"/path/to/filename \")") ←↩
--load $(PREFIX)/share/emacs/site-lisp/dlisp/d-latexize7.el --funcall doit

where /path/to/filename is the name of the file you want to include into your LATEX sources.
In the above printout, note the use of the symbol ←↩ to refer to a line of code that has been
clipped to fit onto the page. Note that $(PREFIX) is set by default to /usr/ under GNU/Linux or
c:/java-training-wheels/ under M.S. Windows. Ran the LATEX fontification engine on itself
to print out the following printout. Note the use of GNU m4 to provide logic for the printout:

// BEGIN FILE: ../m4-emacs-pretty-print-latex2.m4

m4 define ([m4 emacs pretty print latex], m4 dnl

[\noindent{} m4 ifelse (-1, m4 regexp ($1,el),{\color{comm}{//}},{\color{comm}{;;}}) m4 dnl

{\bf\colorbox{begin-code-bg}{\color{begin-code-fg}{{\bf B}EGIN FILE:}}} m4 dnl

{\bf\color{black}{ m4 patsubst (m4 patsubst ($1, ,\\),~,\\~{})}} m4 dnl

m4 syscmd (emacs --batch --eval "(setq *target* \"$1\")" ←↩

--eval "(setq load-path (cons \"~/dlisp\" load-path))" ←↩

--load ~/dlisp/d-latexize7.el --debug-init ←↩

--funcall doit)

m4 esyscmd (cat $1.tex) m4 dnl

m4 ifelse (-1, m4 regexp ($1,el),{\color{comm}{//}},{\color{comm}{;;}}) m4 dnl

{\bf\colorbox{begin-code-bg}{\color{begin-code-fg}{{\bf E}ND FILE:}}}\hspace{3.76mm} m4 dnl

{\bf\color{black}{ m4 patsubst (m4 patsubst ($1, ,\\),~,\\~{})}}

m4 syscmd (rm -f $1.tex) m4 dnl

])

// END FILE: ../m4-emacs-pretty-print-latex2.m4

This macro is called like so:

m4 begin indent

m4 emacs pretty print latex (/path1/to/File.java) m4 dnl java-mode file

m4 emacs pretty print latex (/path2/to/File.jtw) m4 dnl jtw-mode file

m4 emacs pretty print latex (/path3/to/file.cc) m4 dnl c++-mode file

m4 emacs pretty print latex (/path4/to/file.c++) m4 dnl c++-mode file

m4 emacs pretty print latex (/path5/to/file.el) m4 dnl emacs-lisp-mode file

http://davin.50webs.com/research/2010/d-latexize7.el.html

CONTENTS 9

m4 emacs pretty print latex (/path6/to/file.lisp++) m4 dnl lisp++-mode file

m4 end indent

Where m4 begin indent and m4 end indent are defined like so:

m4 define ([m4 begin indent],[m4 dnl

\begin{ quote } m4 dnl

\begin{ tt } m4 dnl

\begin{ footnotesize } m4 dnl

m4 changequote (,) m4 dnl Turns m4 quotes off.

])

and like so: I get by with a little help from my friends. It’s getting better all the time.
lucy in the sky with diamonds

you’re such a lovely audience

m4 define ([m4 end indent],[m4 dnl

\end{ footnotesize } m4 dnl

\end{ tt } m4 dnl

\end{ quote } m4 dnl

m4 changequote (,) m4 dnl Turns m4 quotes off

m4 changequote ([,]) m4 dnl Changes m4 quotes back to [...]

])

10 CONTENTS

Chapter 1

Introduction

I get by with a little help from my friends..

sexy rexy

you’re such a lovely audience

This book is about how to add a preprocessor to the Java language to turbo-charge its per-
formance. Both expressiveness and efficiency can be improved using preprocessor languages. The
preprocessor language is J.T.W.. J.T.W stands for Java Training Wheels, and is intended for
computer programming novices. The name Java Training Wheels was the outcome of an email
conversation with Dr. Richard Stallman]1, the President of the Free Software Foundation]2 and
founder of the GNU Project]3, creator of GNU Emacs]4, the GCC compiler]5, and the GNU
Debugger]6 which ultimately resulted in the GNU/Linux] 7 operating system.

Since August 2016, J.T.W. has been accepted by Richard Stallman for inclusion into the Free
Software Foundation’s repository of Free software, so it is now known by the slightly longer name
GNU Java Training Wheels. Visit the following Web page on GNU’s Website for more information:

www.gnu.org/software/jtw

J.T.W. for example allows programmers to learn programming within an environment that
resembles Pascal and BASIC.

A small collection of d-defmacros have been written for you to deploy in your client code. If
you are especially clever, then you can write your own defmacros to eliminate tiresome repetitive
blocks of “boilerplate” code in Java. See §2.7.1 for how to add your own code to J.T.W.

As further proofs of concept for J.T.W. a superfor macro (see §2.7.2) is presented (much like
the for loop construct in BASIC), as well as a file inclusion system (see §2.7.3).

When I first learned the C programming language I was impressed by the power of its pre-
processor. Now in the twenty-first century, the C/C++ preprocessor seems like a remnant from
the dinosaur age with its lack of support for #defines with multiple template arguments and
the need for excessive backslashes to include blocks of code. Also I believe that the C/C++ pre-
processor is not so-called Turing complete, which means that its computational power is severely
limited. Emacs’ suitability for both preprocessing and editing preprocessor code will soon be
demonstrated to you the reader, if you will bare with me I will take you on a tour through some
existing languages and show you how their performance can be turbo-charged.

1stallman.org
2fsf.org
3gnu.org
4en.wikipedia.org/wiki/GNU Emacs
5en.wikipedia.org/wiki/GNU Compiler Collection
6en.wikipedia.org/wiki/GNU Debugger
7en.wikipedia.org/wiki/GNU/Linux

11

http://stallman.org
http://fsf.org
http://gnu.org
http://en.wikipedia.org/wiki/GNU_Emacs
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/GNU/Linux
http://www.gnu.org/software/jtw
http://stallman.org
http://fsf.org
http://gnu.org
http://en.wikipedia.org/wiki/GNU_Emacs
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/GNU_Debugger
http://en.wikipedia.org/wiki/GNU/Linux

12 CHAPTER 1. INTRODUCTION

After learning the C and C++ language, I learned the similar GNU m4 programming language8

which is similar to the C/C++ preprocessor only more powerful, and used it to build a large (over
500 page) Website at

davin.50webs.com

Sometime in between learning C++ and m4 I learned Java and used my knowledge of it to
tutor Stage I students in the language. Then I invented the J.T.W. programming language which
is intended for novices to help them to learn the Java language. I originally used m4 to compile
J.T.W. source code into Java code. It was then that I learned about m4’s limitations, specifically
how m4 operates on strings when it should leave them alone unchanged. More on this later.

I considered using Flex to compile J.T.W. into Java code but for simplicity I chose the slower
but simpler and more powerful technique of using GNU Emacs as a preprocessor. Specifically,
Emacs’ batch mode is used to compile J.T.W. into Java code. The batch mode code is written in
Emacs Lisp (or Elisp for short at the risk of confusion with an older unrelated language called
Elisp), the extension language for the GNU Emacs editor. Emacs is available but not compulsory
to be used as an editor. The main advantage of using Emacs as an editor as well as a preprocessor is
that it allows for syntax highlighting of J.T.W. constructs or whatever constructs your language
uses for the general case of adding a preprocessor language to your favourite language. Also Emacs
provides correct automatic indentation of J.T.W. code.

The J.T.W. programming language is subject to the GNU General Public License for maximum
freedom of extension. Therefore this program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See Chapter §3 for the license agreement.

Enjoy reading my book!

Davin Pearson
Christchurch
New Zealand

January 17, 2019

8en.wikipedia.org/wiki/GNU m4

http://davin.50webs.com
http://en.wikipedia.org/wiki/GNU_m4

Chapter 2

The J.T.W. language

2.1 Why learn to use J.T.W.?

The first part of this book presents a new programming language called J.T.W., short for Java
Training Wheels for the sole purpose of making it easier to learn to program in Java. The J.T.W.
language has a similar syntax to Delphi, Pascal, BASIC and JavaScript and therefore learning
J.T.W. before or while learning Java provides a less steep learning curve than learning Java from
scratch. For many reasons you might even prefer to program in J.T.W. rather than Java. Here is
why you should learn J.T.W. before or while learning Java:

• The J.T.W. language is supported by a parser that troubleshoots problematic J.T.W. code
with clear error messages.

• The J.T.W. language compiles to Java in a natural and straightforward way so it is easy to
learn Java once you know J.T.W. See Figure 2.1 for a comparison of the J.T.W. and Java
build processes.

• Pascal-style begin . . . end constructs are supported instead of C-style { ... } constructs
which is more sensible especially for novices.

• A simple syntax for the main function: beginMain ... endMain rather than the

rather cumbersome: public static void main (String[] args) { ... }.

• Class variables, propertys, functions, methods and constructors are declared as such
much like Delphi which makes your code look clearer. In particular there are new keywords
classVar, property, function, method and constructor.

• The Delphi/Pascal/JavaScript keyword var for clearer local variables.

• The Pascal/BASIC keyword then for clearer if statements.

• The BASIC keywords and and or rather than Java’s rather cumbersome: && and ||

• As proof of concept, a superfor macro is presented for enhanced BASIC-style for loops.

• As proof of concept, file inclusion is supported so that you can spread a class across several
files. Natural divisions are methods. Different methods can be placed in different source
files for those situations where methods become large and unwieldy.

NEW! J.T.W. Version 1.1 supports packages

13

14 CHAPTER 2. THE J.T.W. LANGUAGE

*.class

run class

*.java

*.jtw

emacs

javac | emacs

java | emacs

run class

*.class

*.java

java

javac

Figure 2.1: Above left is J.T.W.’s build process. Above right is Java’s build process. NOTE: the
vertical bar | represents a piping of the output of the first command into the input of the second
command. In the case of Emacs, its batch mode rather than interactive mode is used in the build
process. See §2.11.3 for the GNU Makefile for the details of this build process.

2.2 GNU Emacs as a development environment

2.2.1 Why use GNU Emacs as your development environment?

GNU Emacs is the most powerful editor in existence. Most of the Emacs source code is written
in a high level language called Emacs Lisp or Elisp for short. Therefore it is much easier to add
customizations than for any other program written in a lower level language such as C or C++.
Code can be easily written so that Emacs can host any language you care to use. For J.T.W. the
code has already been written for you in the form of jtw-mode.el. You can choose to use Emacs
with Davin Pearson’s customizations or Emacs with just Davin’s jtw-mode.el. It is recommended
that you use Emacs with all of Davin’s customizations (also known as Davin’s Full Version of GNU
Emacs) for maximal editing effectiveness. See the following website www.emacsrocks.com for some
cool stuff that Emacs can do.

2.2.2 Installing GNU Emacs

Installing GNU Emacs on Windows P.C.’s

1. First you need to download emacs-25.2-i686.zip or a later version from GNU’s Web-
site: ftp://ftp.gnu.org/pub/gnu/emacs/windows]. The file size is approximately 92
megabytes, about the size of twelve MP3 songs. The download time should a few min-
utes on Broadband Internet.

2. Then you need to unzip the archive to your c:/Program Files folder.

3. Then you need to set the HOME environment variable to a sensible value for your system. If
you have only one hard drive, then the most appropriate value for HOME is c:/home. If you
do not set the HOME variable, it will default to c:/ but the problem with this is that the root
directory of your hard drive will be cluttered with a whole bunch of files beginning with the
period character (.), eg. .*. Here is how you should go about achieving this:

(a) Firstly minimise any open windows.

(b) Press Windows E to open Windows Explorer.

(c) Right click on This P.C. or My Computer, depending on what version of Windows you
are running.

(d) Click on Properties and then click on Advanced.

http://www.emacsrocks.com
ftp://ftp.gnu.org/pub/gnu/emacs/windows

2.3. INSTALLING THE INSTALLER MODULE FOR C++2LISP++2C++ 15

(e) Click on Environment Variables.

(f) In the User variables or System variables section, if there already is a value for the
HOME variable, then either keep it or change it to a sensible valuesuch as c:\home.

(g) To change it, click on HOME and then click Edit.

(h) When you have finished editing it then click on OK Keep pressing OK until you have
no windows left to close.

4. In Windows Explorer, click on the c: drive, then Program Files then emacs-25.0.95 (or
whatever version of Emacs that you have installed on your system), then bin then addpm.exe

to add a button to copy the Start Emacs button to your Desktop.

5. In the folder pointed to by the HOME variable, create a file called .emacs and save it to disk.
You can use Notepad to create such a file. To open Notepad, click on the Start button, then
All Programs, then Accessories, then Notepad.

2.3 Installing the installer module for c++2lisp++2c++

To install c++2lisp++2c++ and, optionally Davin’s Full Version of GNU Emacs, follow the follow-
ing instructions:

1. Untar the tarball preprocessors-YYYYmmdd-HHMMSS.tar.gz.

2. Change directory to the following directory: ~/preprocessors, and run the following com-
mand under M.S. Windows

bash install username ENTER

Note that under GNU/Linux you will need to be logged in as the root user. To achieve this,
simply wrap the above command with su ...exit like so:

su

bash install username ENTER

exit ENTER

Note that you will be prompted for the root password.

3. Note that under M.S. Windows you will need to have the program bash.exe installed on
your system. You can install this program from Cygwin1. It should be already installed on
GNU/Linux systems. When running the install script, you will be asked for the location of
the prefix directory, the destination directory for your J.T.W. files, and whether or not to
install Davin’s Full Version of GNU Emacs.

4. If you have the program yes installed (as will be the case if you are running GNU/Linux or
Cygwin1) then you can run the installer module with all of the default settings by issuing
the following command. Note that the default setting is not to install Davin’s Full Version
of GNU Emacs. Use the following command under Windows:

yes | bash install ENTER

or the following command user GNU/Linux:

su yes | bash install ENTER exit

1Visit the following Website: www.cygwin.com for the program setup.exe which will install this program (and

others too).

http://www.cygwin.com

16 CHAPTER 2. THE J.T.W. LANGUAGE

Installing GNU Emacs on GNU/Linux systems

In GNU/Linux systems that derive from Debian,2 all you need to do is to type the following
command from your Bash prompt:

su

apt-get install emacs25 ENTER

exit ENTER

To execute this command, you will be prompted for the root password.

Installing bash, grep, make and sed

To run J.T.W. files you need to have bash, grep, make and sed installed on your system, which
you can install yourself if you are using cygwin. If you are running a GNU/Linux system these
commands will already be installed. If you are using Cygwin under M.S. Windows then you can
download the executables using the already-mentioned command setup.exe

Under GNU/Linux systems that derive from Debian, execute the following command

su ENTER

apt-get install package ENTER

where package is a name of the package that you want to install. Note that you will be
prompted for the root password.

2.3.1 Uninstalling c++2lisp++2c++

To uninstall c++2lisp++2c++, you need to issue following command. Note that you will be
prompted for the root password:

su ENTER

bash uninstall username ENTER

exit ENTER

Assuming you have untarred the tarball preprocessors-YYYYmmdd-HHMMSS.tar.gz to the
following folder: ~/preprocessors, then you need to issue the following command to remove the
files: rm -fr ~/preprocessors.

2.4 Introducing J.T.W. keywords

In §2.1 I explained how the J.T.W. keywords begin . . . end replaces { ... }, and how the
J.T.W. keywords beginMain . . . endMain replaces public static void main (String[] args)

{ ... }. This section explains the rest of the J.T.W. keywords.

1. The J.T.W. keyword var makes it clearer whenever a new local variable is introduced. For
example: The following J.T.W. code: var int x = 123; compiles to the following Java code:
int x = 123;.

2. The J.T.W. keyword classVar is used to denote class variables, also known in Java as
static variables.

2See the following link: www.debian.org/misc/children-distros for a list of GNU/Linux distributions which

derive from Debian. The list includes Ubuntu (see ubuntu.com) and Lubuntu (see lubuntu.net) the flavour of

GNU/Linux that I choose to use.

http://www.debian.org/misc/children-distros
http://ubuntu.com
http://lubuntu.net

2.5. YOUR FIRST PROGRAM 17

3. The J.T.W. keyword property is used to denote propertys, also known as instance vari-
ables.

4. The J.T.W. keyword function is used to denote class methods, those which in Java have
the static keyword.

5. The J.T.W. keyword constructor is used to denote constructors.

6. The J.T.W. keyword method is used to denote methods, those which in Java lack the
static keyword.

7. The J.T.W. keyword then is used to make if statements more clear. For example: if (abc)

then begin ... end in J.T.W. compiles to if (abc) { ... } in Java.

8. The elseif keyword for replacing else if.

9. The J.T.W. keywords and and or serve to replace Java’s cumbersome && and || for, respec-
tively logical and and logical or.

2.5 Your first program

Traditionally the first program you write in any language is a program that does nothing but
prints out “Hello, world!”. Here is such a program in J.T.W. which belongs in a file called
MyFirstProgram.jtw:

class MyFirstProgram

begin

beginMain

System.out.println(STRINGBGFG("Hello, world!"));

endMain

end

Here is the same program as the above, after being compiled to Java. This code will reside in a
file called MyFirstProgram.java.

class MyFirstProgram

{
public static void main (String[] args)

{
System.out.println(STRINGBGFG("Hello, world!"));

}
}

2.5.1 Building J.T.W. into Java and running class files

To build a single class file, you simply execute the command from your ~/jtw-tutorials folder:

make build MyFirstProgram.run

which will build, in order, MyFirstProgram.java, MyFirstProgram.class before running

java -enableassertions MyFirstProgram

The purpose of the “build” target is to call the “clean” target which deletes all *.java and
*.class files before building the target file. If you don’t do this then java might run an old
version of *.class files despite earlier errors in the build process. This is because the use of pipes
in building and executing *.class files hides the return values of the programs javac and java.
The build target is also useful also when compiling groups of *.jtw files.

18 CHAPTER 2. THE J.T.W. LANGUAGE

2.6 J.T.W. Tutorials

These tutorials are also available on-line on my Website:

davin.50webs.com/J.T.W

The answers to the tutorials can be found at my Website above and are protected by passwords.
For the passwords to the answers to the questions, see §2.17. To enter the passwords,scroll down
to Section 3: Answers to the tutorials. and click on the hyperlink there.

• §2.6.1 Introducing functions,parameters,arguments,strings,System.out.println and com-
ments to give you enough basic J.T.W. to get you started.

• §2.6.2 Tutorial 2: Introduction to programming in J.T.W. Introducing chars,the
difference between == and =,booleans,the if (...) then ... elseif (...) ... elseif
(...) ... else ... construct,local variables,ints,the superfor construct and teaching
you how to call existing methods of the string class but not teaching you how to write your
own methods until Tutorial 9.

• §2.6.3 Tutorial 3: superfor loops and for loops. Introducing System.out.print
for printing without a trailing carriage return,revising loops that use the superfor con-
struct,introducing doubles and revising ints and chars.

• §2.6.4 Tutorial 4: Four looping constructs. Other types of loops such as while and
do . . . while,and revising if (. . .) then . . . elseif (. . .) . . . elseif (. . .) . . . else . . .
statements and for loops. Learning what is the best of these three looping constructs.

• §2.6.5 Tutorial 5: A beer drinking song. Using all of the J.T.W. constructs that you
have learnt so far to rewrite a song to be more general-purpose.

• §2.6.6 Tutorial 6: Class variables. Introducing class variables which are different from
variables that are local to functions.

• §2.6.7 Tutorial 7: Non-Object arrays. Introducing non-object arrays that are either single
dimensional or multi dimensional using two different initialisation syntaxes and introducing
function name overloading.

• §2.6.8 Tutorial 8: Accessing functions and class variables from another class.
Learning how to access functions and class variables from another class and introducing
boolean arrays.

• §2.6.9 Tutorial 9: Mapping:

1. class variables → instance variables (which are better known as propertys),and

2. functions → methods

to allow for more than one object per class. This gives you the full power of O.O.P. (Object
Oriented Programming) classes. Introducing getter methods and references for access-
ing objects. Introducing the null keyword for representing no object and introducing the
toString method,while explaining why this method is better than any other method or
property for debugging your code.

• §2.6.10 Tutorial 10: Object arrays. Introducing object arrays that are either single dimen-
sional or multi dimensional. Revising two different initialization syntaxes from Tutorial 7
on non-object arrays.

• §2.6.11 Tutorial 11: References to another class. When classes have references to
objects of other classes in their propertys then you can set up relationships between different
classes.

http://davin.50webs.com/J.T.W

2.6. J.T.W. TUTORIALS 19

• §2.6.12 Tutorial 12: Overloading methods. Overloading methods,swapping the prop-
ertys of two objects,and converting methods to functions and vice-versa.

• §2.6.13 Tutorial 13: More about references. More questions about references.

• §2.6.14 Tutorial 14: Linked lists. When a class has a reference to itself as a property
then you can build linked lists out of objects of this class. WARNING: Linked lists are
tricky for novice programmers to grasp.

• §2.6.15, Tutorial 15: Introducing inheritance. Introducing polymorphism, getter and
setter methods, the instanceof keyword for run-time type enquiry, the Object class and
explaining in more depth why the toString method is useful for debugging.

• §2.6.16 Tutorial 16: Advanced inheritance. Showing you how inheritance can be used
to reduce the amount of duplication of code.

• §2.6.17 Tutorial 17: Arrays, inheritance and polymorphism. Also teaches why in
most cases it is better to use polymorphism rather than run-time type inquiry.

2.6.1 Tutorial 1

Question 1.1: Some code to get you started. First, please visit §2.2.2 for the programs that
you need to have installed before you can do any coding in J.T.W. You should then download a
tarball (also known as a compressed archive file):

davinpearson.com/binaries/preprocessor-YYYYmmdd-HHMMSS.tar.gz

where YYYY is the year the file was last modified, mm is the month the file was last modified and
dd is the day the file was modified and similarly for HH, MM and SS, containing the code you need
to get started. Then unzip the tarball and change directory to ~/preprocessors and issue the
following command: bash install <username> . Note that you will need to be logged in as root
to execute this command. If you want to run the installer module with all of the default settings,
you need to execute the following command:

yes | bash install www

If you are using M.S. Windows and your HOME variable is unset, then you will need to set it
to a sensible value. Examples of sensible values for your HOME variable include, c:\ or c:\home
or d:\home if your d drive is a hard drive. To set the HOME variable in windows, press Windows
E and right click on My Computer (Windows XP) or This Computer (Windows 10) and click
on Properties, then click on Advanced system settings, then click on Advanced, then click on New
environment variable to set the HOME variable.

When you run the install script using the command bash install <username> and you
will be prompted for the location of prefix directory and the location of the place to keep your
*.jtw files. You will also be asked if you want to install just Davin’s jtw-mode or Davin’s Full
Version of GNU Emacs. The advantage of installing Davin’s Full Version of GNU Emacs is that
it has been extensively modified for optimum editing of code in many different languages. To
install J.T.W. using the default settings, you need to issue the following command: yes | bash

configure, assuming you have the command yes installed as will be the case if you are using
GNU/Linux or Cygwin3. Note that under the default settings, Davin’s Full Version of GNU Emacs
is not extracted.
Question 1.2: Your first J.T.W. program. Traditionally in computer science the first pro-
gram that you write in any programming language is a program that does nothing else but prints
out "Hello,World". The following code does just that. In order to compile and run the following
program you will need use the copy feature of your web browser and the paste feature of your text

3www.cygwin.com

http://davinpearson.com/binaries/preprocessor-YYYYmmdd-HHMMSS.tar.gz
http://www.cygwin.com

20 CHAPTER 2. THE J.T.W. LANGUAGE

editor (which I hope for your sake is Davin’s version of GNU Emacs or GNU Emacs with Davin’s
jtw-mode) to bring the following program code out of the J.T.W. web page and into your text
editor for editing purposes. Once you have copied and pasted your code you can then compile
and run it. Every other question in these tutorial requires you to be familiar with the copy and
paste operation unless you are a masochist and like to type in your source code by hand. In the
following code, note the use of the class construct. In J.T.W. and Java, every piece of program
code that does some real computational work resides in a class of some description.

class MyFirstProgram

beginMain

System.out.println(STRINGBGFG("Hello,World!"));

endMain

The code for any class X in these tutorials should reside in a file called X.jtw. Therefore
the above code should be put into a file called MyFirstProgram.jtw. If two classes X and Y use
each other and X contains the main function then it is convenient to place them both in a file
called X.jtw. To build and run some code, you first need to be in the /jtw-tutorials folder
and secondly you need to issue the following shell command: make build X.run where X is the
name of the class that you want to run, so it is

make build MyFirstProgram.run

in this case. For all questions that follow this one, it will be assumed that you know how
to do this. See §2.16.6 for more information about how to build collections of classes and entire
packages.
Question 1.3: Multiple calls to System.out.println. Change the above code from printing
the string STRINGBGFG("Hello, World!") to printing out the following messages. Please note
that it will be easiest to use multiple calls to System.out.println() which sends text to the
screen for the purpose of viewing.

Hello, Anne! How are you doing?

Hello, Brian! How are you doing?

Hello, Clare! How are you doing?

Question 1.4: Functions, parameters and arguments. A function is a piece of code that
does some computational work and optionally returns a value. Notice how the hello function
below takes a value of whose name to say hello to. This value who is called a parameter. The values
passed to the parameter by the call to the function is called an argument. For the purposes of
this question, add two more calls to the hello function in the main function to get the same
result as the code for the previous question. The keyword void indicates that this function does
not return a value. See the next question for a function that does return a value.

class MySecondProgram

function void hello (String who)

System.out.println(STRINGBGFG("Hello ") + who + STRINGBGFG(",how are you doing?"));

beginMain

hello(STRINGBGFG("Anne"));

endMain

2.6. J.T.W. TUTORIALS 21

Question 1.5: Return values. Notice how the following hello function returns a string rather
than printing out the string. Add two more calls to the hello function below to get the same
result as for Question 1.3.

class MyThirdProgram

function String hello (String who)

return STRINGBGFG("Hello ") + who + STRINGBGFG(",how are you doing?");

beginMain

System.out.println(hello(STRINGBGFG("Anne")));

endMain

Question 1.6: Ignoring return values. In J.T.W. and Java, it is not necessary to use a value
that is returned by a function. Sometimes this wastes computational resources since the value
that is computed by the function is not used but other times when the function whose value is to
be ignored does some additional work by setting the value(s) of some variable(s) to different values
then the function call is not a waste of resources. To ignore the value returned by the hello func-
tion, simply call the function without using the value like so: hello(STRINGBGFG("Ignored"));
For the purposes of this question, try calling the hello function without using the return value
by adding a line of code to the main function.
Question 1.7: Comments. Study the following code. Note the use of dark green and red
comments. Comments are used to disable code for debugging purposes and also to help explain
how a program works. The most useful comment in J.T.W. and Java is /** until the first */.
This type of comment is harvested by Javadoc to produce documentation on how a class works.
The second and third most useful comments are (respectively) // until the end of the line and /*

until the first */. The third type of comment is not very useful because in J.T.W and Java you
are not allowed to have one comment inside another, so if you use this type of comment you will
constantly need to search for and remove */ closing comments. In the tutorials that follow you
will see many comments, although mainly the first and second types of comments.

/** This comment is harvested by Javadoc

to document the MyFourthProgram class */

class MyFourthProgram

begin // I am a single line comment

/* I am

a multi-line

comment */

/** This comment is harvested by Javadoc

to document the hello function */

function String hello (String who)

begin

return STRINGBGFG("Hello ") + who + STRINGBGFG(",how are you doing?");

end

/** This comment is harvested by Javadoc

to document the main function */

beginMain

System.out.println(hello(STRINGBGFG("Anne")));

endMain

end

22 CHAPTER 2. THE J.T.W. LANGUAGE

2.6.2 Tutorial 2

Question 2.1: The following code returns whether or not the current parameter ch is a vowel. The
parameter ch is of type char which is used to hold the components of a string. That is to say, strings
are built out of sequences of chars. Also note the use of the Character.toUpperCase function to
convert chars into uppercase chars so that the code works equally well for isVowel(STRINGBGFG(’a’))
and isVowel(STRINGBGFG(’A’)). Study, compile and run the following code. Does it print what
you expected it to? If not, then fix the bug.

class Scrabble

function boolean isVowel (char ch)

ch = Character.toUpperCase(ch);

if ((ch == STRINGBGFG(’A’)) or (ch == STRINGBGFG(’E’)) or (ch == STRINGBGFG(’I’)) or

(ch == STRINGBGFG(’O’)) or (ch == STRINGBGFG(’U’)))

then return true;

else return false;

beginMain

System.out.println(isVowel(STRINGBGFG(’a’)));

endMain

In the above code, note the difference between a = b example: ch = Character.toUpperCase(ch)
and a == b example: ch == STRINGBGFG(’A’). The first is an assignment that sets a to be what-
ever the value of b is, while the second is a question that says whether or not the two arguments
a and b are equal.
Note that later on in this tutorial you will learn that this is not the way to compare two strings.
Also note the use of the boolean return type. This means that the return value is either true or
false.
Question 2.2: By copying the pattern established by the above code, write a function isConsonant

which returns whether or not the given argument is not a vowel. The easiest way to do this is
to write isVowel(ch) == false which means: “ch is not a vowel”. You will also need to ensure
that the parameter ch is greater than or equal to STRINGBGFG(’A’) and less than or equal to
STRINGBGFG(’Z’). Then test your code by calling isConsonant from the main function.
Question 2.3: By copying the pattern established in the following code:

function int countVowels (String word)

var int result = 0;

superfor (var int i=0 to word.length()-1;)

var char ch = word.charAt(i);

if (isVowel(ch)) then result = result + 1;

return result;

write a function that counts the number of consonants in a word. Note the use of the var keyword
for defining variables that are local to functions. Local variables are very much like parameters
that were introduced in the previous tutorial. In the above code, note the use of word.charAt(i)
and word.length(). The first of these results the character at location in the string word given by

2.6. J.T.W. TUTORIALS 23

the value of i and the second of these returns the length of the string word. In Tutorial 11 you will
learn that these are called methods which are different from functions that currently know how to
write. Until we get to this tutorial and we are ready to teach you how to write your own methods,
you will only call existing methods such as the above methods of the String class. Then test
your code by calling it from the main function.
Question 2.4: Write a method simpleScoreWord that calls countVowels and countConsonants

to give a Simple Score of a word. The Simple Score of a word is the number of vowels in the word
plus the number of consonants in the word times ten. Then test your code by calling it from the
main function.
Question 2.5: Write a method advancedScoreLetter that returns the Advanced Score of a
letter. Here is a breakdown of the distribution of letters for the purpose of the calculation of the
Advanced Scores.

• 2 blank tiles (scoring 0 points)

• 1 point: E 12 tiles, A 9 tiles, I 9 tiles, O 8 tiles, N 6 tiles, R 6 tiles, T 6 tiles, L 4 tiles, S 4
tiles, U 4 tiles

• 2 points: D 4 tiles, G 3 tiles

• 3 points: B 2 tiles, C 2 tiles, M 2 tiles, P 2 tiles

• 4 points: F 2 tiles, H 2 tiles, V 2 tiles, W 2 tiles, Y 2 tiles

• 5 points: K 1 tiles

• 8 points: J 1 tiles, X 1 tiles

• 10 points: Q 1 tiles, Z 1 tiles

Then test your code by calling it from the main function.
Question 2.6: Write a method advancedScoreWord that returns the Advanced Score of a word.
The Advanced Score of a word is the sum of the Advanced Scores of each letter in the word. If
the word is eight letters long then you should add an extra, say, 50 points to the score. Then test
your code by calling it from the main function.
Question 2.7: Comparing strings. Amend the advancedScoreWord function so that swear
words get a score of zero. For the purposes of this question you only need to think of three
swear-words to add to the code. In the interests of not offending anyone, please keep your
choice of swear words very tame. When comparing strings it is a mistake to use == which
you already know is how you compare the following types that you know of so far: booleans,
chars and ints. Using == on strings compiles and runs but gives you the incorrect result. The
correct method to compare strings is to use the equals method of the string class like so:
word.equals(STRINGBGFG("bugger")) which returns true or false, depending on whether or not
the string word currently holds the value STRINGBGFG("bugger").
Question 2.8: Change the advancedScoreWord function so it works equally well with up-
percase words and lowercase words. You will need write to call either word.toUpperCase() or
word.toLowerCase() and store the result in word.

2.6.3 Tutorial 3

Question 3.1a: For loops that count up in steps of one. Study the following code and
verify that it prints out “2 3 4 5 6 7 8 9 10” by compiling and running it. Notice that the
System.out.print() function call doesn’t print a carriage return after printing the argument
value. That is why the System.out.println() function call is needed at the end of the superfor
and for loop, to print a carriage return at the end of the line. Also note the use of the plus sign
to concatenate a string and the number to produce another string.

24 CHAPTER 2. THE J.T.W. LANGUAGE

beginMain

/* Here is the superfor loop: */

superfor (var int i=2 to 10) System.out.print(STRINGBGFG(" ") + i);

System.out.println();

/* Here is the ordinary for loop: */

for (var int i=2 i<=10; i=i+1) System.out.print(STRINGBGFG(" ") + i);

System.out.println();

endMain

Question 3.1b: Change the superfor loop and the ordinary for looop to print out: “5 6 7 8

9 10”.
Question 3.1c: Change the superfor loop and the ordinary for looop to print out: “234 235

236 237 238”.
Question 3.1d: Change the superfor loop and the ordinary for looop to print out: the for loop
to print out “48 49 50 ... 75 76”.
Question 3.1e: Change the for loop to print out “-5 -4 -3 -2 -1 0 1 2 3”.
Question 3.2a: For loops that count up in steps greater than one. Study the following
code and verify that it prints out “10 15 20 25 30 35 40” by compiling and running it.

beginMain

/* Here is the superfor loop: */

superfor (var int i=10 to 40 step 5) System.out.print(STRINGBGFG(" ") + i);

System.out.println();

/* Here is the ordinary for loop: */

for (var int i = 10; i<=40; i=i+5) System.out.print(STRINGBGFG(" ") + i);

System.out.println();

endMain

Question 3.2b: Change the for loop to print out “20 25 30 35 40”.
Question 3.2c: Change the for loop to print out “100 105 110 115 120 125”.
Question 3.2d: Change the for loop to print out “2 4 6 8 10 12 14”.
Question 3.2e: Change the for loop to print out “10 13 16 19 22 25”.
Question 3.3a: For loops that count down in steps of one. Study the following code and
verify that it prints out “10 9 8 7 6 5 4 3 2 1” by compiling and running it.

beginMain

/* Here is the superfor loop: */

superfor (var int i=10 downto 1) System.out.print(STRINGBGFG(" ") + i);

System.out.println();

/* Here is the ordinary for loop: */

for (var int i = 10; i>=1; i=i-1) System.out.print(STRINGBGFG(" ") + i);

System.out.println();

endMain

Question 3.3b: Change the for loop to print out “10 9 8 7 6 5 4”.
Question 3.3c: Change the for loop to print out “20 19 18 17 16 15 14 13 12”.
Question 3.3d: Change the for loop to print out “66 65 64 ... 47”.
Question 3.3e: Change the for loop to print out “3 2 1 -1 -2 -3 -4 -5 -6 -7”.
Question 3.4a: For loops that count down in steps greater than one. Study the following
code and verify that it prints out “100 90 80 70 60 50 40 30 20” by compiling and running it.

2.6. J.T.W. TUTORIALS 25

beginMain

/* Here is the superfor loop: */

superfor (var int i=100 downto 20 step -10) System.out.print(STRINGBGFG(" ") + i);

System.out.println();

/* Here is the ordinary for loop: */

for (var int i = 100; i>=20; i=i-10) System.out.print(STRINGBGFG(" ") + i);

System.out.println();

endMain

Question 3.4b: Change the for loop to print out “80 70 60 50 40 30 20”.
Question 3.4c: Change the for loop to print out “500 490 480 470 460”.
Question 3.4d: Change the for loop to print out “10 8 6 4 2 0”.
Question 3.4e: Change the for loop to print out “33 28 23 18 13 8 3”.
Question 3.5a: For loops that use floating point numbers to count. Study the following
code and verify that it prints out “1.1 2.2 3.3 4.4” by compiling and running it. The type
name double is short for double precision floating point. It is natural to ask: why not use single
precision floating point? The answer to this question is that double precision floating point gives
fewer compilation errors than single precision floating point does.

beginMain

/* Here is the superfor loop: */

superfor (var double i=1.1 to 4.41 step 1.1) System.out.print(STRINGBGFG(" ") + i);

System.out.println();

/* Here is the ordinary for loop: */

for (var double i = 1.1; i<=4.41; i=i-1.1) System.out.print(STRINGBGFG(" ") + i);

System.out.println();

endMain

Note the extension of the to part of the superfor loop and the second part of the for loop. The
number is 4.41 and this prevents round off errors in doubles from getting to the final value of 4.4.
Question 3.5b: Change the for loop to print out “0 2.2 4.4 6.6”. Note that rounding errors
may prevent you from getting this exact answer. Also note that the answer to this question is not
what you would naively expect without running the code.
Question 3.5c: Change the for loop to print out “-30 -19.9 -9.8 0.3 10.4 20.5”.
Question 3.5d: Change the for loop to print out “100.0 96.7 93.4 90.1 86.8 83.5 80.2

76.9”.
Question 3.5e: Change the for loop to print out “-100.0 -105.5 -111.0 -116.5”.
Question 3.6a: For loops that use chars to count. Study the following code and verify that
it prints out “a b c d e f g h i j k l m n o p q r s t u v w x y z” by and running it.

beginMain

/* Here is the superfor loop: */

superfor (var char i = STRINGBGFG(’a’) to STRINGBGFG(’z’))

System.out.println();

/* Here is the ordinary for loop: */

for (var char i=STRINGBGFG(’a’); i<=STRINGBGFG(’z’); i=i+1) System.out.print(STRINGBGFG("

") + i);

System.out.println();

endMain

26 CHAPTER 2. THE J.T.W. LANGUAGE

Question 3.6b: Change the for loop to print out “a b c d e f”.
Question 3.6c: Change the for loop to print out “z y x w v u t s r q p o n m l k j i h

g f e d c b a”.
Question 3.6d: Change the for loop to print out “p o n m l k j i h”.
Question 3.6e: Change the for loop to print out “A B C D E F G H I J K L M N O P Q R S

T U V W X Y Z”.

2.6.4 Tutorial 4

Study the following code:

class LoopTest

function int powerOf2A (int n)

var int counter = n;

var int result = 1;

while (counter != 0)

result = 2 * result;

counter = counter - 1;

return result;

function int powerOf2B (int n)

var int counter = n;

var int result = 1;

do

result = 2 * result;

counter = counter - 1;

while (counter != 0);

return result;

function int powerOf2C (int n)

var int result = 1;

for (var int counter = n; counter != 0; counter = counter - 1)

result = 2 * result;

return result;

function int powerOf2D (int n)

var int result = 1;

superfor (var int counter = n downto 1)

result = 2 * result;

2.6. J.T.W. TUTORIALS 27

return result;

/**

* Prints a row of stars of a given length.

*/

function void printLineC (int length)

for (var int i = 0; i<length; i=i+1)

System.out.print(STRINGBGFG("#"));

System.out.println();

beginMain

// For question 4.1 add some code here...

endMain

Question 4.2: To the main function add some code to call the functions powerOf2A, powerOf2B,
powerOf2C and powerOf2D to verify that they all return the same result. To inspect the result you
will need to apply the System.out.println() statement to the values returned by those functions.
Question 4.3: There is a bug in the powerOf2B method because it does not behave correctly
in the case when n is zero. Put an if statement at the top of this method to make it handle the
case of zero properly.
Question 4.4: By copying the pattern of powerOf2A, powerOf2B, powerOf2C and powerOf2D,
write methods printLineA, printLineB and printLineD that work identically to the method
printLineC, except that they use while loops, do loops and superfor loops, respectively. Add
some code to the main function to test them out.
Question 4.5: Based on the previous three questions, is there a best looping construct? Or does
it depend on what the looping construct is going to be used for?

2.6.5 Tutorial 5

Question 5.1: Study the following code and then compile and run it to verify that it prints out
the lyrics to a popular beer-drinking song:

class BeerSong

beginMain

System.out.println(STRINGBGFG("Five bottles of beer on the wall."));

System.out.println(STRINGBGFG("Five bottles of beer on the wall."));

System.out.println(STRINGBGFG("If one bottle of beer should accidentally fall,"));

System.out.println(STRINGBGFG("there’d be four bottles of beer on the wall."));

System.out.println();

System.out.println(STRINGBGFG("Four bottles of beer on the wall."));

System.out.println(STRINGBGFG("Four bottles of beer on the wall."));

System.out.println(STRINGBGFG("If one bottle of beer should accidentally fall,"));

System.out.println(STRINGBGFG("there’d be three bottles of beer on the wall."));

System.out.println();

System.out.println(STRINGBGFG("Three bottles of beer on the wall."));

28 CHAPTER 2. THE J.T.W. LANGUAGE

System.out.println(STRINGBGFG("Three bottles of beer on the wall."));

System.out.println(STRINGBGFG("If one bottle of beer should accidentally fall,"));

System.out.println(STRINGBGFG("there’d be two bottles of beer on the wall."));

System.out.println();

System.out.println(STRINGBGFG("Two bottles of beer on the wall."));

System.out.println(STRINGBGFG("Two bottles of beer on the wall."));

System.out.println(STRINGBGFG("If one bottle of beer should accidentally fall,"));

System.out.println(STRINGBGFG("There’d be one bottle of beer on the wall."));

System.out.println();

System.out.println(STRINGBGFG("One bottle of beer on the wall."));

System.out.println(STRINGBGFG("One bottle of beer on the wall."));

System.out.println(STRINGBGFG("If one bottle of beer should accidentally fall,"));

System.out.println(STRINGBGFG("there’d be no bottles of beer on the wall."));

System.out.println();

endMain

Question 5.2: The following is the first attempt to make the code smaller but to keep the same
output: If you compile and run the following code you will notice that it counts up from one rather
than down from n. Change the for loop so that it runs down rather than up. For information
about how to write the for loop, please consult Tutorial 2.

class BeerSong

function song (int n)

for (var int i=1; i<=n; i=i+1)

System.out.println(i + STRINGBGFG(" bottles of beer on the wall"));

System.out.println(i + STRINGBGFG(" bottles of beer on the wall"));

System.out.println(STRINGBGFG("If one bottle of beer should accidentally fall,"));

System.out.println(STRINGBGFG("there’d be ") + (i-1) + STRINGBGFG(" bottles of beer

on the wall"));

System.out.println();

beginMain

song(5);

endMain

Question 5.3: Finish the number2string function below and add a new function call to this
function in the song function so that it print textual numbers rather than digits.

function String number2string (int n)

assert n>=0 : n;

assert n<=10: n;

if (n == 0) then return STRINGBGFG("no");

if (n == 1) then return STRINGBGFG("one");

if (n == 2) then return STRINGBGFG("two");

/* rest of code goes here */

2.6. J.T.W. TUTORIALS 29

if (n == 9) then return STRINGBGFG("nine");

if (n == 10) then return STRINGBGFG("ten");

assert false;

Question 5.4: Add a new function String capitalize (int n) that capitalizes the first word in
a String and call this function from the song function so that the first words in each sentence
are capitalized. You should find the function Character.toUpperCase and the methods String
and String helpful for writing this function. See the String class of the java.lang package in
the following link:

docs.oracle.com/javase/1.5.0/docs/api

for more details.
Question 5.5: Add new function call String plural (int n) that returns the string STRINGBGFG("s")
if n is not equal to 1 and the empty string STRINGBGFG("") otherwise. Then call this function
from the song function so that the phrase STRINGBGFG("bottle") is pluralized when it should
be.
Question 5.6: Write a function called number2string2 that can handle values up to but not
including 100. Note that you will need multiple if statements to achive this. Note that if n is a
number then the following expressions are useful:

• var int temp1 = n / 10 % 10 results in temp1 holding the tens digit of n and is zero in
the case that n<10.

• var int temp2 = n % 10 results in temp2 holding the ones digit of n.

Also make it print out STRINGBGFG("one hundred or more") in the case that n>=100
Question 5.7: Change the song function so that the following function call: song(5,STRINGBGFG("rum"));
in the main function results in the following printout:

Five bottles of rum on the wall.

...

there’d be no bottles of rum on the wall.

Question 5.8: Once all the code is working, add the following line to the main function:
song(100,STRINGBGFG("gin")); so that it prints out the following:

One hundred bottles of gin on the wall.

...

there’d be zero bottles of gin on the wall.

Question 5.9 Write a new function number2string3 that works like number2string2 and
number2string except that it handles numbers up to 999. Internally number2string3 should
call number2string2. You might find the following function useful:

function String textand (String a, String b)

if (a.equals(STRINGBGFG("")) or b.equals(STRINGBGFG(""))) then return a + b;

else return a + STRINGBGFG(" and ") + b;

http://docs.oracle.com/javase/1.5.0/docs/api

30 CHAPTER 2. THE J.T.W. LANGUAGE

Question 5.10 † Tricky Write a new function number2string4 that works like number2string3
execpt that it handles numbers up to nine hundred and ninety-nine million nine hundred and
ninety-nine thousand nine hundred and ninety-nine, i.e. 999,999,999. The function number2string4

should internally call number2string3 like so:

• var String ones = number2string3(n % 1000);

• var String thousands = number2string3(n / 1000 % 1000);

• var String millions = number2string3(n / 1000 / 1000 % 1000);

Note that the variables above will have values from 0 to 999 inclusive.

2.6.6 Tutorial 6

Question 6.1: Study, compile and run the following code. Note the use of the class variable
myMoney. A class variable is different from a variable that is local to a function because the
lifetime of the class variable is for the duration that the program is run, whereas the lifetime of
a local variable is for the duration of the function call. In the code that follows, the variable
myMoney is used to store a numerical value, for how much money you have.

class Money

/** Property myMoney stores money value in dollars */

classVar int myMoney;

function void spend (String item, int value)

myMoney = myMoney - value;

System.out.println(STRINGBGFG("*** spent $") +

value +

STRINGBGFG(" on ") + item +

STRINGBGFG(",leaving you with $") + myMoney);

beginMain

myMoney = 100;

spend(STRINGBGFG("aquarium"),50);

spend(STRINGBGFG("shoes"),100);

spend(STRINGBGFG("lipstick"),20);

endMain

Question 6.2: Change the myMoney class variable so that it is a double (short for double-
precision floating point) rather than an int. You will need to add a new function money2string

that converts double values into strings. For example the floating point number 1.2345 should
be printed out as $1.23. If x is a double then the following expression converts x from a double
into a number of dollars (int)x and the following expression converts x into a number of cents
(int)(money * 100) - 100 * dollars. Note that you will need to make it so that $1.03 prints
out as this value.

Question 6.3: Add an if statement to the spend function so that it uses System.out.println()
to print out an error message if the person does not have enough funds in their bank account to
pay for the item parameter.

2.6. J.T.W. TUTORIALS 31

Question 6.4: Add a new class variable double governmentsMoney and make it so that 12.5goes
to the government in the form of G.S.T. (¡u¿G¡/u¿oods and ¡u¿S¡/u¿ervices ¡u¿T¡/u¿ax a value-
added tax)
Question 6.5: Add a new class variable numBattleships that records how many batteships are
owned by the government. Write a function buyBattleShips that causes the government to buy
as many battleships as it can afford. Make it so that the buyBattleShips function prints out
how many battleships were purchased. Let the cost of each battleship be one million dollars and
store this value in a variable called costOfShip. Please note that if the government’s money is
less the one million dollars then no battleships will be purchased.
Question 6.6: Set the initial value for governmentsMoney to be two millions dollars, then call
the buyBattleShips function and verify that two battleships were purchased.

2.6.7 Tutorial 7

This tutorial teaches you how to create single dimensional and multi-dimensional arrays of non-
objects. The non-object types in Java are those which aren’t declared inside a class, so it includes
the following types: boolean, char, int, float and double. A helpful convention in Java is that the
non-object types start with a lowercase letter, while object types start with an uppercase letter,
such as for example the String class as an example of an object type. In addition to this, two
different array initialization syntaxes are presented.

Single dimensional arrays

Question 7.1: Here is an example of a convenient one dimensional array initialization syntax.
Study, compile and run the following code. The code int[] should be read out loud as int array
indicating that the variable a is an int array, also known as an array of ints. Note that the first
value of the for loop below is zero. This is because in J.T.W. and Java, the first index of an array
is zero not one. This convention harks back to the old days of the C Programming Language and
is used because it is more efficient in the low level of machine language than counting arrays from
one. Also note that parenthesis are used to delimit arrays. I use this practice because this is the
only place in Java where a semicolon follows a closing parenthesis. If you don’t know what I am
talking about, simply ignore that remark!

var int[] a = { 1,2,3 };
for (var int i=0; i<3; i=i+1)

System.out.println(STRINGBGFG("a[") + i + STRINGBGFG("]=") + a[i]);

Due to a design oversight by the creators of Java you cannot use this syntax to re-initialize an
array like so:

a = { 4,5,6 }; // Compilation error

Luckily there is a way array around this oversight and that is to use a design pattern where you
introduce a temporary variable like so:

var int[] temp = { 4,5,6 };
a = temp; // Array "a" now holds 4 5 6

Later you will learn why this design pattern is useful for re-initializing multi-dimensional arrays.
Question 7.2: Write a function print that takes an int array argument and prints out the
array. You will need to use the length property of the array parameter so your function works

32 CHAPTER 2. THE J.T.W. LANGUAGE

with arbitrary sized arrays. Change the main function to what follows so that it contains a call
to the print function.

var int[] a = { 1,2,3 };
print(a);

Question 7.3: Write a function with same name as the previous print function, except that
this one should take an argument that is a double[], also known as a double array. Two functions
with the same name in the same class is allowed in Java and the practice of using has a special
name that is: function name overloading. Overloading is only allowed when the two functions
with the same name have different parameters. When you call an overloaded function J.T.W.
and Java looks at the number and types of the arguments a determines from this which of the
overloaded functions to call. Change the main function to what follows so that it initializes an
array of double-precision floating point variables and then calls the second print function.

var double[] b = { 1.1,2.2,3.3 };
print(b);

Here is an example of a second initialisation syntax. For this particular example it is better to
use the simpler, earlier initialisation syntax, but when the size of the array to be created is to be
determined at run-time, then the second syntax should used. The next question will show you an
example of this.

beginMain

var int[] a = new int[3];

// at this point the array is all zeroes

for (var int i=0; i<3; i=i+1)

a[i] = i;

print(a);

endMain

Question 7.4: Write a function create takes one int argument, the size of the array to create
and returns an int array of that size. Make it so the ith element of the array is initialized to i.
Call this function from the main function like so:

beginMain

var int[] a = create(3);

print(a);

endMain

Question 7.5: Write a function create2 takes one int argument, the size of the array to create
and returns a double array of that size. Make it so the ith element of the array is initialized to
i.i, given that i¡10. Why is it not possible to overload that create function? Try it and see
what the compiler says. Call create2 from the main function like so:

beginMain

var double[] a = create2(3);

print(a);

endMain

2.6. J.T.W. TUTORIALS 33

Question 7.6: Write a function doubler that takes an int array x and returns a new int array
result that is twice as big as x. Copy x into result before you return it. The extra elements in
the result should all be zero.
Question 7.7: Change the doubler function so that every zero in the array result is set to
the value 13.

Two dimensional arrays

Question 7.8: Here is an example of a convenient two dimensional array initialization syntax.
Study, compile and run the following code. The code int[][] should be read out loud as int array
array indicating the variable a is an int array array, also known as a two-dimensional array of
ints.

beginMain

var int[][] a = { { 1,2,3 } { 4,5 } { 6 } }

for (var int y=0; y<a.length; y=y+1)

for (var int x=0; x<a[y].length; x=x+1)

System.out.print(STRINGBGFG(" ") + a[y][x]);

System.out.println();

endMain

Question 7.9: By copying the pattern of the code above, do some more overloading of the print

function by writing two new print functions, one taking a two-dimensional array of ints, the
other taken a two-dimensional array of doubles. The call both of these functions from the main

function.
Note that if x is a two-dimensional array of ints, then x[i] is a one dimensional array of ints for

each in the range 0 ... x.length-1. Note that in the above code, a[0] is an array of three
ints, a[1] is an array of two ints and a[2] is an array of one int. The reason these sub-arrays
are all of different sizes is to save your computer’s precious memory. For example you can have
one sub-array much longer than all of the others without needing to allocate a whole bunch of
memory that will go unused. Since a[0] is an int array, you would naively expect it to be able to
be re-initialized like so:

a[0] = { 4,5,6,7};

so that after this code a[0] holds the four element long array 4,5,6 and 7. But as mentioned
above in Section §7.1, this doesn’t work because of a design oversight by the creators of Java.
Luckily as mentioned above there is a way around this oversight and that is to use a temporary
variable like so:

var int[] temp = { 4,5,6,7};
a[0] = temp; // Array "a[0]" now holds 4 5 6 7

Like with one dimensional arrays, there is a second initialisation syntax for two-dimensional arrays
and here it is. Unlike the above code the sub-arrays a[0], a[1] and a[2] are all of equal size,
namely three.

34 CHAPTER 2. THE J.T.W. LANGUAGE

var int[][] a = new int[3][3];

a[0][0] = 1; a[1][0] = 2; a[2][0] = 3;

a[0][1] = 4; a[1][1] = 5;

a[0][2] = 6;

Question 7.10: Write a function create3 and create4 that takes on int argument size and
returns a two dimensional array of ints or doubles, respectively. Make is so that if a is the name
of the returned array, then a[y][x] is set to the value of x+y.

Three dimensional arrays

Question 7.11: Using the knowledge you have gained so far about arrays, create, initialize and
print a three dimensional array of ints.

2.6.8 Tutorial 8

Question 8.1: Study, compile and run the following code which resides in a file called Box.jtw.
Notice the use of System.out.print() to print without a trailing newline and System.out.println()
to print with a trailing newline. The ln part tells you this.

class Box

function void square (int n)

for (var int y=0; y<n; y=y+1)

for (var int x=0; x<n; x=x+1)

if ((x == 0) or (x == n-1) or (y == 0) or (y == n-1))

then System.out.print(STRINGBGFG("#"));

else System.out.print(STRINGBGFG(" "));

System.out.println();

beginMain

square(5);

endMain

Notice that here is the output of the above code for different values of the n parameter:

2.6. J.T.W. TUTORIALS 35

n = 1 #
n = 2 ##

##
n = 3 ###

#
###

n = 4 ####
#
#
####

n = 5 #####
#
#
#
#####

Question 8.2: By copying the pattern established in the above code, write a new function
square2 that generates the following output. Note that you will need to remove some of the or
clauses in the square method above to get the following output:

n = 1 #
n = 2 ##

##
n = 3 ###

###
n = 4 ####

####
n = 5 #####

#####

Question 8.3: By copying the pattern established in the above code, write a now function
square3 that generates the following output:

n = 1 #
n = 2 ##

##
n = 3 # #

#
#

n = 4 # #
#
#
#

n = 5 # #
#
#
#
#

36 CHAPTER 2. THE J.T.W. LANGUAGE

Question 8.4: Study, compile and run the following code which resides in a file called Box.java:

class Box

function void x (int n)

for (var int y=0; y<n; y=y+1)

for (var int x=0; x<n; x=x+1)

if ((x == y) or (x == n-1-y)) then System.out.print(STRINGBGFG("#"));

else System.out.print(STRINGBGFG(" "));

System.out.println();

beginMain

x(5);

Notice that here is the output of the above code for different values of the n parameter:

n = 1 #
n = 2 ##

##
n = 3 # #

#
#

n = 4 # #
##
##

#
n = 5 # #

#
#

#
#

Question 8.5: By copying the pattern established in the above code, write a now function x2

that generates the following output. Note that you will need to remove one of the or clauses in
the x method above to get the following output:

2.6. J.T.W. TUTORIALS 37

n = 1 #
n = 2 #

#
n = 3 #

#
#

n = 4 #
#

#
#

n = 5 #
#

#
#

#

Question 8.6: By copying the pattern established in the above code, write a now function x3

that generates the following output. Note that you will need to remove one of the or clauses in
the x method above to get the following output:

n = 1 #
n = 2 #

#
n = 3 #

#
#

n = 4 #
#

#
#

n = 5 #
#

#
#

#

Question 8.7: Study, compile and run the following code which resides in a file called Box.java:

class Box

function void triangle (int n)

for (var int y=0; y<n; y=y+1)

for (var int x=0; x<n; x=x+1)

if (x<y)

then System.out.print(STRINGBGFG("#"));

else System.out.print(STRINGBGFG(" "));

System.out.println();

beginMain

triangle(5);

38 CHAPTER 2. THE J.T.W. LANGUAGE

endMain

Notice that here is the output of the above code for different values of the n parameter:

n = 1 #
n = 2 #

##
n = 3 #

##
###

n = 4 #
##
###
####

n = 5 #
##
###
####
#####

Question 8.8: By copying the pattern established in the above code, write a now function
triangle2 that generates the following output. Note that you will need to change the if clause in
the triangle method above to get the following output:

n = 1 #
n = 2 ##

#
n = 3 ###

##
#

n = 4 ####
###
##
#

n = 5 #####
####
###
##
#

Question 8.9: Write a now function called box that generates the following output. Note that
you will need to modify the triangle method above to get the following output:

2.6. J.T.W. TUTORIALS 39

n = 1 #
n = 2 ##

##
n = 3 ###

###
###

n = 4 ####
####
####
####

n = 5 #####
#####
#####
#####
#####

Question 8.10: Add the following code to Box.java:

class Grid

/** The dimensions of the array named: array. */

classVar int size = 20;

/* NOTE: the array below is a two-dimensional array */

classVar boolean[][] array = new boolean[SIZE][SIZE];

function void set (int x, int y, boolean v)

if (x>=0 and x<size and y>=0 and y<size) then

array[x][y] = v;

function void print (int size)

for (var int y=0; y<size; y=y+1)

for (var int x=0; x<size; x=x+1)

if (array[x][y])

then System.out.print(STRINGBGFG("#"));

else System.out.print(STRINGBGFG(" "));

System.out.println();

System.out.println(); // prints an empty line between shapes

Question 8.11: The following question will guide you through the process of making the drawing
algorithm more powerful. Instead of printing the shapes directly to the screen, they will be stored
in an array to be printed out only when the array has been completely set. You don’t need to
know a great deal about arrays to answer the remaining questions of this section as the array

40 CHAPTER 2. THE J.T.W. LANGUAGE

code has been written for you in the Grid class above. For every call to System.out.println()
in Box.java, replace it with a call to the set method of the Grid class. Note that the third
parameter in the set method is of type boolean, that is to say it can be either true or false. To
call a function of another class you need to prefix the name of the class like so: Grid.set(/*
argument values */). Finally at the end of all of the functions in the Box class except for the
main function you will need to call the print(int) method of the Grid class to actually

print out the array.
Question 8.12: Re-initialize the boolean array array named array from the main function
of the Box class. HINT: to access a class variable from another class, you need to prefix it
with the name of its class name, in this case it is Grid. Re-initialize the array variable to a
two-dimensional array of dimensions 100 x 100. Also set the size variable to 100 so that the
functions of the Grid class still work.

2.6.9 Tutorial 9

Elementary classes: using a single class for everything

For the purpose of the text that follows, O.O.P. stands for ¡u¿O¡/u¿bject ¡u¿O¡/u¿riented ¡u¿P¡/u¿rogramming.
Question 9.1: Study, compile and run the following code:

// BEGIN FILE: jtw-tutorials/Person-1.jtw

class PersonDriver1
begin

classVar String homersName = "Homer Simpson" ;

classVar int homersAge = 40; // Homer’s age in years

classVar String fredsName = "Fred Flintstone" ;

classVar int fredsAge = 45; // Fred’s age in years

classVar String darthsName = "Darth Vader" ;

classVar int darthsAge = 55; // Darth’s age in years

function void growHomer ()

begin
homersAge = homersAge + 1;

end
function void growFred ()

begin
fredsAge = fredsAge + 1;

end
function void growDarth ()

begin
darthsAge = darthsAge + 1;

end

function void knightHomer ()

begin
homersName = "Sir " + homersName;

end
function void knightFred ()

begin
fredsName = "Sir " + fredsName;

end
function void knightDarth ()

begin
darthsName = "Sir " + darthsName;

end

function void printHomer ()

begin

2.6. J.T.W. TUTORIALS 41

System.out.println "I am " + homersName + ", my age is " + homersAge;

end
function void printFred ()

begin
System.out.println "I am " + fredsName + ", my age is " + fredsAge);

end
function void printDarth ()

begin
System.out.println "I am " + darthsName + ", my age is " + darthsAge);

end

beginMain
growHomer();

knightHomer();

printHomer();

printFred();

printDarth();

endMain
end
// END FILE: jtw-tutorials/Person-1.jtw

)
Question 9.2: By copying the pattern established in the existing code write a some new class
variables to represent a new person called Barack Obama. Note that he was born in 1945 so at
the time of writing this manual he is 67 years old.
Question 9.3: Then write some functions to work with this new person.
Question 9.4: Finally call those functions from the main function.

Improved classes: one object per class

As your program gets large (say over 1000 lines) then it becomes no longer practical to put all of
your code in the same class. So it is natural to put each piece of related code in its own class.
Question 9.5: Study, compile and run the following code: Each of these classes can be put in
their own file. For each class X, this class can be put into a file called X.jtw. However for the
purposes of this tutorial you will probably find it easier to merge all of the classes into the same
file into a file called PersonDriver2.jtw

// BEGIN FILE: jtw-tutorials/Person-2.jtw

class Homer
begin

classVar String name = "Homer Simpson" ;

classVar int age = 40; // Homer’s age in years

function void grow ()

begin
age = age + 1;

end
function void knight ()

begin
name = "Sir " + name;

end
function void print ()

begin
System.out.println "I am " + name + ", my age is " + age);

end
end

class Fred
begin

classVar String name = "Fred Flintstone" ;

classVar int age = 45; // Fred’s age in years

42 CHAPTER 2. THE J.T.W. LANGUAGE

function void grow ()

begin
age = age + 1;

end
function void knight ()

begin
name = "Sir " + name;

end
function void print ()

begin
System.out.println "I am " + name + ", my age is " + age);

end
end

class Darth
begin

classVar String name = "Darth Vader" ;

classVar int age = 55; // Darth’s age in years

function void grow ()

begin
age = age + 1;

end
function void knight ()

begin
name = "Sir " + name;

end
function void print ()

begin
System.out.println "I am " + name + ", my age is " + age);

end
end

class PersonDriver2
begin

beginMain
Homer.grow();
Fred.knight();
Homer.print();
Fred.print();
Darth.print();

endMain
end
// END FILE: jtw-tutorials/Person-2.jtw

Question 9.6: By copying the pattern established in the existing code write a new class to
represent Barack Obama.
Question 9.7: Call the functions from the main function of the driver class.

True O.O.P.: more than one object per class

To allow for more than one object per class, most if not all class variables needs to be made into
what are called instance variables (or more simply and more commonly known as properties) and
most if not all functions need to be made into what are called methods.
Question 9.8: Study, compile and run the following code:

// BEGIN FILE: jtw-tutorials/Person-3.jtw

class Person
begin

//

2.6. J.T.W. TUTORIALS 43

// NOTE: the use of the ”property” keyword here instead of the ”classVar” keyword

//

property String name;

property int age; // Person’s age in years

//

// NOTE: the use of the ”method” keyword here instead of the ”function” keyword

//

method void grow ()

begin
age = age + 1;

end

method void knight ()

begin
name = "Sir " + name;

end

method void print ()

begin
System.out.println "I am " + name + ", my age is " + age);

end

beginMain

var Person h = new Person();
h.name = "Homer Simpson" ;

h.age = 40;

var Person f = new Person();
f.name = "Fred Flintstone" ;

f.age = 45;

var Person d = new Person();
d.name = "Darth Vader" ;

d.age = 55;

h.grow();

h.knight();

h.print();

f.print();

d.print();

endMain
end
// END FILE: jtw-tutorials/Person-3.jtw

In the above code, note the use of three references h, f and
Question 9.9: By copying the pattern established in the existing code add some code to the
main function add some code to create a new person for Barack Obama.

A common design pattern: private properties, public constructor and public getters

A common design pattern in Java and one that I present for you in the following code is to make all
of the properties of a class effectively read-only to all client classes by making all of the properties
private and providing non-private getter methods for getting the values of the properties. It is
possible for the original class to change the values of the properties but other classes (such as
PersonTest below) are not capable of doing this, without calling a method of the original class
such the grow and knight methods of the Person class. Finally an additional thing known
as a constructor is used to ensure that objects are initialized with meaningful values for their
properties.
Question 9.10: Study, compile and run the following code:

44 CHAPTER 2. THE J.T.W. LANGUAGE

// BEGIN FILE: jtw-tutorials/Person-4.jtw

class Person
begin

private property String name;

private property int age; // Age in years

//

// NOTE: Getter methods

//

method String getName ()

begin
return name;

end

method int getAge ()

begin
return age;

end

constructor(String aName, int anAge)

begin
this.name = aName;

this.age = anAge;

end

method void grow ()

begin
age = age + 1;

end

method void knight ()

begin
name = "Sir " + name;

end

method void print ()

begin
System.out.println "I am " + name + ", my age is " + age);

end
end

class PersonDriver3
begin

beginMain

//

// NOTE: In the following constructor calls the age and name are set by the constructor

//

var Person h = new Person "Homer Simpson" ,40);

var Person f = new Person "Fred Flintstone" ,45);

var Person d = new Person "Darth Vader" ,55);

h.grow();

h.knight();

h.print();

f.print();

d.print();

h.name = "Luke Skywalker" ; // ERROR: name is private

h.age = h.age + 1; // ERROR: age is private

System.out.println "name=" + h.name); // ERROR: name is private

2.6. J.T.W. TUTORIALS 45

System.out.println "age=" + h.age); // ERROR: age is private

System.out.println "name=" + h.getName()); // OK: getter is non-private

System.out.println "age=" + h.getAge()); // OK: getter is non-private

endMain

end
// END FILE: jtw-tutorials/Person-4.jtw

Question 9.11: By copying the pattern established in the existing code add some code to the
main function add some code to create a new person called Barack Obama.

Comparing strings

Question 9.12: Add a method unknight() which removes the STRINGBGFG("Sir ") title if he
has one. One trap for young players in J.T.W. or Java is to use the operator == to compare strings
like so:

function boolean myCompare (String a, String b)

begin

return a == b; // Works but not as expected!

end

It compiles without error, but doesn’t give you the result you were expecting. Instead you
need to use the equals method of the String class like so:

function boolean myCompare (String a, String b)

begin

return a.equals(b);

end

More generally, if x and y are a references to objects, then x == y returns whether or not x
and y are pointing to the same object, whereas x.equals(y) returns whether or not the contents
of the objects referred to by x and y are equal. The meaning of the word contents varies from
class to class, but in the case of strings it means that the strings contain the same data.

You will also find the String class’ substring and (toUpperCase or toLowerCase) methods
useful here too. See the String class of the java.lang package in the following link:

docs.oracle.com/javase/1.5.0/docs/api

for more details of these two methods.

The null value for references

As soon as you learn how to use references you need to know that all reference variables could
conceivably hold the value null, meaning no value. In particular when properties are themselves
references as you will discover in Tutorial 11, then those properties are initialized to null by
default. Object arrays that you will learn about in Tutorial 10 using the second of two initialization
syntaxes are also initialized to null by default.

http://docs.oracle.com/javase/1.5.0/docs/api

46 CHAPTER 2. THE J.T.W. LANGUAGE

Why the toString method is better than any other method or property for debugging

If x is a reference to a class X (including this) and if m is a method of X and p is a property
of X, and if x is currently null, then the following lines result in a NullPointerException being
thrown when executed:

x.p;

x.m();

whereas if x is null then

• System.out.println(x); and

• System.out.println(STRINGBGFG("x=") + x);

prints out, respectively:

• null, and

• x=null.

If x is not null, it calls

• System.out.println(x.toString());

• System.out.println(STRINGBGFG("x=") + x.toString());

so these expressions are safer to use than any other method or property in situations where x

might be null. The syntax of the toString method is as follows:

public method String toString ()

// Code goes here...

Importantly for reasons which will be explained later the toString method must be declared
with public visibility. For other properties and methods to be used safely with null references
you need to wrap a conditional if construct around the calling of the method or property like so
for properties:

if (x != null)

then

System.out.println(x.p);

or like so for methods:

if (x != null)

then

System.out.println(x.m());

2.6. J.T.W. TUTORIALS 47

Therefore the toString method is more convenient than any other method or property. Note
that its use is without the explicit call to the toString method and only used with a variable
name, including this for the current class. Most of the time the this keyword is optional which
is why novices don’t bother to learn it, but in the case of the toString method it is essential, as
can be seen in the following example code:

System.out.println(STRINGBGFG("x.toString()=") + x);

System.out.println(STRINGBGFG("this.toString()=") + this);

Question 9.13: Change the print method above from a method that prints out to the screen
to a method called toString that returns a string.
Question 9.14: Call the toString method instead of the print methods in the main function.

2.6.10 Tutorial 10

This tutorial teaches you how to create single dimensional and multi-dimensional arrays of objects.
The object types are all types execpt for boolean, char, int, float and double. A helpful convention
in Java is that the Object types start with an uppercase letter, while non-object types start with
a lowercase letter, such as for example the String class as an example of an object type. In
addition to this, two different array initialization syntaxes are presented.

Single dimensional arrays

Question 10.1: Here is an example of a convenient one dimensional array initialization syntax.
Study, compile and run the following code. The code Person[] should be read out loud as person
array indicating the variable a is a person array, also known as an array of persons.

class Person

private property String name;

public constructor Person(String aName)

name = aName;

public String toString ()

return name;

class PersonTest

beginMain

var Person[] a = { new Person(STRINGBGFG("P # 1")), new Person(STRINGBGFG("P #

2")), new Person(STRINGBGFG("P # 3")) };

for (var int i=0; i<3; i=i+1)

System.out.println(STRINGBGFG("a[") + i + STRINGBGFG("]=") + a[i]);

endMain

48 CHAPTER 2. THE J.T.W. LANGUAGE

Due to a design oversight by the creators of Java you cannot use this syntax to re-initialize an
array like so:

// Compilation error

a = { new Person(STRINGBGFG("P # 4")), new Person(STRINGBGFG("P # 5")), new Person(STRINGBGFG("P

6")), new Person(STRINGBGFG("P # 7")) };

Luckily there is a way array around this oversight and that is to use a design pattern where you
introduce a temporary variable like so:

// No error

var Person[] temp = { new Person(STRINGBGFG("P # 4")), new Person(STRINGBGFG("P # 5")), new Per-

son(STRINGBGFG("P # 6")), new Person(STRINGBGFG("P # 7")) };
a = temp; // Array "a" now holds P # 4,P # 5,P # 6,P # 7

Later you will learn why this design pattern is useful for re-initialising multi-dimensional arrays.
Question 10.2: Write a function in the class PersonTest called print that takes a Person
array argument and prints out the array. You will need to use the length property of the array
parameter so your function works with arbitrary sized arrays. Change the main function to
what follows so that it contains a call to the print function.

var Person[] a = { new Person(STRINGBGFG("P # 1")), new Person(STRINGBGFG("P # 2")),

new Person(STRINGBGFG("P # 3"))};
print(a);

Question 10.3: Write your own class called Mine similar to the Person class with a one int
parameter constructor, a private int property p and a toString method that converts p to a
string. Then write a function in the PersonTest class with same name as the previous print

function, except that this one takes a Mine[], also known as a Mine array. You might recall
from Tutorial 7 that this practice of having two functions with the same name is called function
name overloading. Change the main function to what follows so that it initializes an array of
Mine point variables and then calls the second print function.

var Mine[] b = { new Mine(1), new Mine(2), new Mine(3) };
print(b);

Here is an example of a second initialization syntax. For this particular example it is better to
use the simpler, earlier initialization syntax, but when the size of the array to be created is to be
determined at run-time, then the second syntax should used. The next question will show you an
example of this.

beginMain

var Person[] a = new Person[3];

// at this point the array is all nulls

for (var int i=0; i<3; i=i+1)

a[i] = new Person(STRINGBGFG("P # ") + (i+1));

print(a);

endMain

2.6. J.T.W. TUTORIALS 49

Question 10.4: Write a function create takes one int argument, the size of the array to create
and returns a Person array of that size. Make it so the ith element of the array is initialized to
STRINGBGFG("P # ") + i. Call this function from the main function like so:

beginMain

var Person[] a = create(3);

print(a);

endMain

Question 10.5: Write a function create2 takes one int argument, the size of the array to
create and returns a Mine array of that size. Make it so the ith element of the array’s toString
method prints out STRINGBGFG("Mine # ") + i. Why is it not possible to overload that create
function? Try it and see what the compiler says. Call create2 from the main function like
so:

beginMain

var Mine[] a = create2(3);

print(a);

endMain

Question 10.6: Write a function doubler that takes a Person array x and returns a new
Person array called result twice as big as x. Copy x into the result before you return it. The
extra elements in result should all be null.
Question 10.7: Change the doubler function so that every null in the array result is set to
a new Person make it so that every new Person object has a different name property.

Two dimensional arrays

Question 10.8: Here is an example of a convenient two dimensional array initialization syntax.
Study, compile and run the following code. The code Person[][] should be read out loud
as person array array indicating the variable a is a person array array, also known as a two-
dimensional array of persons.

beginMain

var Person[][] a = { { new Person(STRINGBGFG("P # 1")), new Person(STRINGBGFG("P #

2")), new Person(STRINGBGFG("P # 3")) },
{ new Person(STRINGBGFG("P # 4")), new Person(STRINGBGFG("P # 5"))

},
{ new Person(STRINGBGFG("P # 6")) } };

for (var int y=0; y<a.length; y=y+1)

for (var int x=0; x<a[y].length; x=x+1)

System.out.print(STRINGBGFG(" ") + a[y][x]);

System.out.println();

endMain

Question 10.9: By copying the pattern of the code above, do some more overloading of the print
function by writing two new print functions, one taking a two dimensional array of Person, the

50 CHAPTER 2. THE J.T.W. LANGUAGE

other taken a two dimensional array of Mine. The call both of these functions from the main

function.

Since a[0] is a Person array,you would naively expect it to be able to be re-initialized like so:

a[0] = { new Person(STRINGBGFG("P # 4")),

new Person(STRINGBGFG("P # 5")),

new Person(STRINGBGFG("P # 6")) };

so that after this code a0 holds the four element long array Person # 4,Person # 5 and Person

6,but it does’t work owing to a design oversight by the creators of Java. Luckily as mentioned
above there is a way around this oversight and that is to use a temporary variable like so:

var Person[] temp = { new Person(STRINGBGFG("P # 4")),

new Person(STRINGBGFG("P # 5")),

new Person(STRINGBGFG("P # 6")) };
a[0] = temp; // Array "a[0]" now holds P # 4,P # 5,P # 6

Like with one dimensional arrays,there is a second initialisation syntax for two dimensional arrays
and here it is. Unlike the above code the sub-arrays a[0],a[1] and a[2] are all of equal size,namely
three.

var Person[][] a = new Person[3][3];

a[0][0] = new Person(STRINGBGFG("P # 1"));

a[0][1] = new Person(STRINGBGFG("P # 2"));

a[0][2] = new Person(STRINGBGFG("P # 3"));

a[1][0] = new Person(STRINGBGFG("P # 4"));

a[1][1] = new Person(STRINGBGFG("P # 5"));

a[1][2] = new Person(STRINGBGFG("P # 6"));

a[2][0] = new Person(STRINGBGFG("P # 7"));

a[2][1] = new Person(STRINGBGFG("P # 8"));

a[2][2] = new Person(STRINGBGFG("P # 9"));

Question 10.10: Write a function create3 and create4 that takes an int argument size and
returns a two dimensional array of Person or Mine, respectively. Make is so that each Person
or Mine object has its own number, using a separate counter variable int count.

Three dimensional arrays

Question 10.11: Using the knowledge you have gained so far about arrays, create, initialize and
print a three dimensional array of Person. Make it so that each Person object is given its own
number using a separate counter variable int count.

2.6.11 Tutorial 11

The following code presents example involving three classes Flea, Dog and DogOwner to rep-
resent the idea that a dog has a flea and a dog-owner has a dog. The class DogTest is the driver
class. The key concept of this tutorial is that classes can have references of objects of another
class in order to set up a relationship between the two classes.

Question 11.1 Study the following code and find the two bugs in it. Fix the bugs and then
compile and run it to verify that it prints out STRINGBGFG("p=I am a flea called Pop").

2.6. J.T.W. TUTORIALS 51

// BEGIN FILE: jtw-tutorials/DogTest.jtw

class Flea
begin

property String name;

constructor Flea(String aName)

begin
aName = name;

end

public method String toString ()

begin

return "(I am a flea called " + name + ")" ;

end
end

class Dog
begin

property String name;

property int age; // Age in years

property Flea dogsFlea;

constructor Turtle(String aName, int anAge, Flea aFlea)

begin
name = aName;

age = anAge;

dogsFlea = aFlea;

end
end

class DogTest
begin

beginMain
var Flea p = new Flea "Pop");

var Flea s = new Flea "Squeak");

var Flea z = new Flea "Zip");

System.out.println "p=" + p);

endMain
end
// END FILE: jtw-tutorials/DogTest.jtw

Question 11.2: In the main function of the DogTest class, write code to call the toString

method for the fleas referenced by s and z.
Question 11.3: In the main method of the DogTest class, write code to construct three dogs
called "Fido", "Jimbo" and "Rex". For the purposes of the rest of these questions, let the name
of the references for Fido, Jimbo and Rex be f j and r. Note that the third parameter to the Dog
class is of type Flea. Therefore you will need to supply a Flea reference for each dog. Make it
so that Fido has a flea called Pop, Jimbo has a flea called Squeak, and Rex has a flea called Zip.

HINT: If the flea called Pop is referenced by the variable name p, then this reference should
appear as the third argument in one of the calls to the Dog constructor.
Question 11.4: Write a toString method in the Dog class that works like the toString

method in the Flea class. Then call this method from the main function to print out the
full statistics of the three dogs that you have just created in Question 11.3.
Question 11.5: By copying the pattern of the Flea and Dog classes, write a class DogOwner
that has three non-private properties: name, salary and ownersDog. Also write a three-parameter
constructor for the DogOwner class that sets these properties.
Question 11.6: Add some code into the main function to construct three dog owners called
Angus, Brian and Charles. Make it so that Angus has a dog called Rex, Brian has a dog called
Jimbo, and Charles has a dog called Fido. For the purposes of the rest of these questions, let the
name of the references for Angus, Brian and Charles be (respectively) a, b and c. Use the Dog

52 CHAPTER 2. THE J.T.W. LANGUAGE

references that you created in Question 11.3 to achieve this. Make it so that Angus, Brian and
Charles have initial salaries of 10,000, 20,000 and 30,000.
Question 11.7: Without changing the call to the DogOwner constructor, change the value of
the salary property of object referenced by a to 1,000,000. Note that since the salary property
of the DogOwner class is non-private you should be able to set the value of the salary property
from the main function of DogTest.
Question 11.8: Write a toString method for the class DogOwner and add some code to the
main function to call it for Angus, Brian and Charles.
Question 11.9: What is the value of: a.ownersDog.dogsFlea.toString()? Add some code to
the main function to find out if it does what you think it should do.

2.6.12 Tutorial 12

Question 12.1: Write constructors for the classes SportsShoe and Runner below, by looking
at the main function to see how many arguments each constructor has.

// BEGIN FILE: jtw-tutorials/RunnerTest.jtw

class SportsShoe
begin

property String model; // what kind of shoe it is

property double speedBoost; // the boosting factor of the shoe

// constructor goes here:

// Useful method for debugging

method String toString ()

begin

return "(I am a shoe called " + model + " and my boosting factor is " + speedBoost + ")" ;

end

end

class Runner

begin
private property String name; // Runner’s name.

private property int speed; // speed of runner in km/hr.

private property SportsShoe shoes; // which shoe they are wearing

// constructor goes here:

// Useful method for debugging

method String toString ()

begin

return "(I am a runner and my name is " + name + " and my shoes are " + shoes + ")" ;

end

/*

** This private method computeSpeed works out the runners speed,

** based on their basic speed and the speed boost due to the

** SportsShoe that they are currently wearing.

*/

// method goes here:

/**
** Prints the result of racing two runners against each other.
*/
function void race (Runner r1, Runner r2)

begin
if (r1.computeSpeed() > r2.computeSpeed()) then

2.6. J.T.W. TUTORIALS 53

begin
System.out.println "Runner " + r1.name + " beats " + r2.name);

end
else

begin
System.out.println "Runner " + r2.name + " beats " + r1.name);

end
end

/**
** Swaps the shoes of two runners.
*/

function void swapShoes (Runner r1, Runner r2)

begin
var SportsShoe tempShoe = r1.shoes;

r1.shoes = r2.shoes;

r2.shoes = tempShoe;

end
end

class RunnerTest
begin

beginMain
var SportsShoe nike = new SportsShoe "Nike NX-71" , 2.0);

var SportsShoe reebock = new SportsShoe "Reebock R20" , 2.3);

var SportsShoe puma = new SportsShoe "Puma P200-MMX" ,4.8);

var Runner sg = new Runner "Speedy Gonzalez" , 55, nike);

var Runner sw = new Runner "Slick Willy" , 49, reebock);

var Runner fa = new Runner "Fat Albert" , 15, puma);

Runner.race(sg,sw);
// Runner.race(sg,sw,fa);

// sg.raceAgainst(sw);

endMain
end

// END FILE: jtw-tutorials/RunnerTest.jtw

Question 12.2: In the Runner class, write the private method computeSpeed that has no
arguments and returns a double-precision floating point value that equals the runner’s running
speed. Note that the speed of a runner is determined by multiplying their speed property with
the speedBoost property of the shoes that they are wearing. For example, Speedy Gonzalez’s
running speed = 55 * 2.0 = 110.0.
Question 12.3: Fix the race method so that it checks for a draw.
Question 12.4: By copying the race method, write a three-parameter race method for racing
three runners against each other. Two methods in the same class with the same name is called
overloading in Java. Add a call to this method from the main function.
Question 12.5: What is the difference between a method and a function? Write a one parame-
ter method raceAgainst that behaves exactly like two-parameter function race. There are two
ways of doing this, one is to optionally use the this keyword rather than one of the parameters
r1 or r2. The second way is for race to simply call race using this as one of the arguments to
the function.
Question 12.6: Is it true that any method can be re-worked into a function and vice versa?
Question 12.7: The swapShoes method in the Runner class swaps the shoes of two runners.
Add some code to the main function to swap the shoes of two runners and verify that the shoes
do indeed get swapped.
Question 12.8: Write a method called swapNames that swaps the names of two runners. You

54 CHAPTER 2. THE J.T.W. LANGUAGE

can put this function into any class but it makes the most sense to put it into the Runner class
since it has two Runner parameters.
Question 12.9: Write a method swapSpeeds that swaps the speed properties of two runners.

2.6.13 Tutorial 13

Question 13.1: Study, compile and run the following code:

// BEGIN FILE: jtw-tutorials/CarTest.jtw

class Car
begin

property String model;

property int value; // Car’s value in dollars

property int serialNumber;

private classVar int serialCounter = 1000;

constructor Car(String aModel, int aValue)

begin
model = aModel;

value = aValue;

serialNumber = serialCounter;

serialCounter = serialCounter + 1;

end

public method String toString ()

begin

return "(I am a car, model=" + model + ", value=" + value +

", serial number=" + serialNumber + ")" ;

end
end

class Owner
begin

property String name;

property int money; // Owner’s money in dollars

property Car ownersCar;

constructor Owner(String aName, int aMoney, Car aCar)

begin
name = aName;

money = aMoney;

ownersCar = aCar;

end

public method String toString ()

begin

return "(I am a car owner, name=" + name + ", money=" + money +

", car=(") + ownersCar + ")" ;

end
end

class CarTest
begin

beginMain
var Car ford = new Car "Ford Escort" ,1000);

var Car nissan = new Car "Nissan Nivara" ,2000);

var Owner joe = new Owner "Joe Bloggs" ,500,ford);

var Owner mary = new Owner "Mary Smith" ,600,null); // Mary has no car to start with.

joe.describe();

2.6. J.T.W. TUTORIALS 55

endMain
end
// END FILE: jtw-tutorials/CarTest.jtw

Question 13.2: What is the purpose of the class variable serialCounter?
Question 13.3: Write a method sellCar that increases the owner’s money by half the value
of their car and the owner’s car reference gets set to null, for no car. If the owner owns no car
(null) simply do nothing.
Question 13.4: Write a method in the Owner class called purchase so that:

Car newCar = new Car(STRINGBGFG("Mini Cooper"),1000);

joe.purchase(newCar);

results in Joe’s money going down by newCar.value and Joe’s car being set to newCar. Call the
sellCar method before Joe purchases his new car
Question 13.5: Write a function in the Owner class called netWorth so that:

System.out.println(STRINGBGFG("Joe’s net worth = ") + joe.netWorth());

prints out Joes’ money plus the value of his car, if he has a car. You will need to use an if (. . .)
then . . . statement to test whether or not a reference is pointing to a valid object or null for no
object like so:

if (ownersCar == null)

then

// do not access ownersCar.value as ownersCar points to no object

else

// do access ownersCar.value

Question 13.6: Write a method in the Owner class called smashCar so that:

mary.smashCar();

halves the value of Mary’s car.
Question 13.7: Write a method in the Owner class called stealCarFrom so that:

mary.stealCarFrom(joe);

results in Mary selling his current car (if he has one) for its market value and Mary acquiring
ownership of Joe’s car. Also make Joe invoke his sellCar method to relinquish ownership of his
car if he has one.
Question 13.8: Write a function in the Owner class called swapMoney so that:

Owner.swapMoney(joe,mary);

swaps the money of Joe and Mary.
Question 13.9: Write a function in the Owner class called swapCars so that:

56 CHAPTER 2. THE J.T.W. LANGUAGE

Owner.swapCars(joe,mary);

swaps the cars of Joe and Mary.
Question 13.10: Write a function in the Car class called swapSerialNumbers so that:

Car.swapSerialNumbers(ford,nissan);

swaps the serial numbers of ford and nissan.
Question 13.11: Write a function in the Owner class called sellCarTo so that

joe.sellCarTo(mary);

results in Joe’s money going up by the value of his car and Mary’s money going down by the value
of his car, and the ownership of Mary’s car gets transferred to Joe.

2.6.14 Tutorial 14

Dr Seuss’ story Yertle the Turtle] describes how a turtle called Yertle sits at the top of a pile of
other turtles. In this example, the pile of turtles is represented by a linked list of Turtle objects,
with the down property serving to connect one Turtle object to another. If a Turtle object has
a non-null down property, then this represents a turtle that is sitting below the current one. The
last turtle in the linked list is the turtle that is at the bottom of the pile, which has a null value
for its down property.
Question 14.1: Study, compile and run the following code:

// BEGIN FILE: jtw-tutorials/TurtleTest.jtw

package files;

class Turtle
begin

private property String name;

private property int age; // Turtle’s age in years

private property double weight; // Turtle’s weight in kg

// NOTE: this property allows for linked lists

property Turtle down;

constructor Turtle(String aName, int anAge, double aWeight)

begin
name = aName;

age = anAge;

weight = aWeight;

end

/** Getter method for name property */

method String getName ()

begin
return name;

end

/** Getter method for weight property */

method double getWeight ()

begin
return weight;

end

https://en.wikipedia.org/wiki/Yertle_the_Turtle

2.6. J.T.W. TUTORIALS 57

/** Useful method for debugging */

public method String toString ()

begin
return name;

end

/** Inserts the turtle t below the current one */

method void insert (Turtle t)

begin
var Turtle temp = this.down;
this.down = t;

t.down = temp;

end
end

public class TurtleTest
begin

beginMain

var Turtle yurtle = new Turtle "Yurtle" , 103, 20);

var Turtle zippy = new Turtle "Zippy" , 102, 30);

var Turtle bungle = new Turtle "Bungle" , 101, 40);

// *** see later

yurtle.down = zippy;

zippy.down = bungle;

bungle.down = null; // NOTE: not needed as bungle.down is null by default

var int totalWeight = 0;

for (var Turtle current = yurtle; current != null; current=current.down)

begin
totalWeight = totalWeight + current.getWeight();

end
System.out.println "The total weight is " + totalWeight);

endMain
end
// END FILE: jtw-tutorials/TurtleTest.jtw

The code in the main function after the *** sets up the following relationships between the

three Turtle objects (Bungle, Zippy and Yertle). Figure 2.2 shows the relationship between the
different turtles. When you traverse the list of turtles you must always start at the top turtle
(known as the head of the linked list). If you give a different value for the top turtle, your code
will think that the given turtle is the one at the top of the pile and you will get the wrong result.

Question 14.2: Move the code for calculating the total weight of the turtles from the main

function to a function called function void printTotalWeight (Turtle top) in the Turtle class

that prints out the total weight of the turtles. Then call that function from the main function
to get the same result as before. Note that that if printTotalWeight was a method then calling
that method using null (representing an empty list) like so: null.printTotalWeight() would
be an error, whereas Turtle.printTotalWeight(null) wouldn’t be and therefore is better. This
is one example of how methods and functions differ.
Question 14.3: Revision question for getters. By copying the pattern established by the
getName method, add two getter methods to the Turtle class: getAge which returns the current
turtle’s age and getWeight which returns the current turtle’s weight. Then call these methods
on the Yertle object in the main function. Note that the toString method would be more
appropriate as it handles nulls better but you known that the yurtle reference is not null so you
know it is safe to call the getAge and getWeight methods on the yurtle reference.
Question 14.4: Write a function Turtle findBottomTurtle (Turtle top) that returns the Turtle
object that is at the top of the pile, and returns null if there isn’t one.

58 CHAPTER 2. THE J.T.W. LANGUAGE

Yertle

Zippy

Bungle

down

down

down

null

Figure 2.2: A linked list of Turtle objects

Question 14.5: Then call this function from the main function using System.out.println()
and the top turtle yertle.
Question 14.6: Write a function Turtle findOldestTurtle (Turtle top) that returns the oldest
turtle or null if there isn’t one.
Question 14.7: Then call this function from the main function using System.out.println()
and the top turtle yurtle.
Question 14.8: Write a function Turtle findHeaviestTurtle (Turtle top) returns the heaviest
turtle, or null if there isn’t one.
Question 14.9: Then call this function from the main function using System.out.println()
and the top turtle yurtle.
Question 14.10: Write a function void sayPile (Turtle top) that prints the names of the turtles
in the pile starting from the top turtle and finishing at the bottom turtle. Then call this function
from the main function.
Question 14.11: Under what circumstances would it be okay to change the visibility of the down

property to private, like the name, age and weight properties?
Question 14.11: Add an extra parameter to the constructor which is a reference the to the
turtle below of the current one. Then remove all occurrences of the down property from the main

function. The advantage of this is that it enables you to change the visibility of the down property
to private.

2.6.15 Tutorial 15

Basic Inheritance

When you see the following code: class X extends Y, it means that class X inherits from the
class Y. Class X is called the subclass and the class Y is called the super-class or sometimes the
parent class. When the class X extends from Y, it pulls in all of the non-private methods and
propertys from the super-class Y. Inherited methods can override the behaviour of that same
method in the super-class to give behaviour that is specific to the sub-class. The concept of
methods overriding other methods is called dynamic method binding or more commonly the
more impressive-sounding name: polymorphism. The main thing that this tutorial shows is the
idea that inheritance is a non-symmetrical relationship. For example: in the code that follows,
the Bird class inherits from the Animal class, which corresponds to the idea that every bird
is an animal. The reverse, every animal is a bird is plainly not true! Inheritance forces you to
recognize this.

2.6. J.T.W. TUTORIALS 59

Question 15.1: Study, compile and run the following code. The following code shows how inher-
itance works. In the following code, the Bird class inherits from the Animal class. The Bird
class pulls in the Animal class’s age property and the canFly and talk methods. Importantly
the canFly property overrides the behaviour of the canFly method of the parent Animal class,
which reflects that fact that generally speaking, birds can fly. In the code that follows, note that
int properties are initialized to zero by default and the super method (also known as the con-
structor of the super-class) is called by default if there is a zero parameter constructor in the
super-class, which there is by default, even if you don’t write one!

class Animal

property int age; // Animal’s age in years

property int health; // Animal’s health in hit points

constructor Animal()

age = 0; // NOTE: not needed as set by default

health = 100;

method boolean canFly ()

return false;

method void talk ()

System.out.println(STRINGBGFG("Hello"));

class Bird extends Animal

property double flySpeed; // Bird’s speed in km/h

constructor Bird()

super(); // NOTE: not needed as called by default

flySpeed = 0; // NOTE: not needed as set by default

method boolean canFly ()

return true;

method void peck ()

System.out.println(STRINGBGFG("peck"));

60 CHAPTER 2. THE J.T.W. LANGUAGE

class InheriTest

beginMain

var Bird eagle = new Bird();

eagle.talk();

eagle.peck();

endMain

Question 15.2: Override the talk method of the Animal class in the Bird class to print out
STRINGBGFG("Tweet Tweet!") rather than STRINGBGFG("hello") to give more accurate talking
of bird objects.
Question 15.3: By copying the pattern established in the Bird class, change the eagle from
an instance of the Bird class to its own class in its own right and then create an instance of
that class in the main function of InheriTest. Your Eagle class should have one property:
int numberOfKills and one method: void attack() that internally increments the value of
numberOfKills. In the main function you should call every method of the Eagle class and
its super-classes.
Question 15.4: What is the advantage of using a new separate class to represent a new object
rather than using an instance of an existing class?
Question 15.5: Create a new class Kiwi that inherits from the Bird class. Your Kiwi class
should override the canFly method to return false, which reflects the fact that generally speaking
birds can fly, but the kiwi bird in particular does not fly. Your Kiwi class have a property
numberOfWorms. Once you have written the Kiwi class you should create an instance of the
Kiwi class in the main function.

Question 15.6: Why does the following line of code in the main function print out 100 but
there is no setting of that variable to that value in the Kiwi class?

System.out.println(k.health);

Question 15.7: In the classes Animal, Bird, Eagle and Kiwi, remove all of the canFly

methods and replace it with a single canFly property of the Animal class. In the constructors
you will need to set the value of the canFly property to a value that is appropriate for that class.
For example in the Bird class’s constructor you should set the canFly property to true, while
in the Kiwi class’s constructor you should set the canFly property to false.
Question 15.8: What is the advantage of having a canFly property over a bunch of canFly
methods?
There is an equally valid alternative to having a public property in the Animal class and that
is to have in the Animal class a private property canFly and a pair of methods for getting
and setting the value of the canFly property like so. These methods in J.T.W. and Java are
called getter methods and setter methods since, as their names suggest, getters are used for
getting the value of something and setters are used for setting the value of something. Note that
the canFly method of the code above corresponds to getCanFly method in the code below.

private property boolean canFly;

method boolean getCanFly ()

return canFly;

method void setCanFly (boolean aCanFly)

2.6. J.T.W. TUTORIALS 61

canFly = aCanFly;

You might think that it is simpler to have one thing (a single non-private property) rather than
three things (a private property and a non-private getter method and a non-private setter
method) and you would be right. However from the point of view of the client code that uses
the Animal class, the two approaches are identical. Later on when you learn more you will
understand under what circumstances the second getter and setter approach is better.
Question 15.9: Change the main function to what follows:

var Bird b = new Bird(10);

var Animal a = b;

a.talk();

a.peck();

When you compile this code it gives a compilation error. What line gives the error and what is
the reason for the error?
Question 15.10: Change the main function to what follows:

var Animal a = new Animal();

var Bird b = a;

b.talk();

b.peck();

When you compile this code it gives a compilation error. What line gives the error and what is
the reason for the error?

Run-time type inquiry

In J.T.W. and Java there is a keyword called instanceof that does a run-time check on the type
of an object. The following function:

function void say (Animal a)

System.out.println(a instanceof Bird);

uses the instanceof keyword to determine the run-time type of the reference a and prints out
whether or not the reference is referring to a Bird object. Some examples should clarify the
situation:

• say(new Bird()) prints true, Since the parameter a is pointing to a bird object at run-
time,

• say(new Animal()) prints false since not every animal is a bird,

• say(new Eagle()) prints true, since every eagle is a bird, and

• say(new Kiwi()) prints true, since every kiwi is a bird.

• var Animal a = new Animal(); say(a); prints false since at run-time a is not point-
ing to a bird object

62 CHAPTER 2. THE J.T.W. LANGUAGE

• var Animal a = new Bird(); say(a); prints true since at run-time a is pointing to a
bird object.

In Tutorial 17 you will learn why in most cases it is better to use polymorphism instead of the
instanceof keyword for run-time type enquiry.

The super-class of all objects

Every class in Java inherits either directly or indirectly from a class called Object. That is to
say if x is a reference variable, then the run-time expression x instanceof Object is always true
except for the pathological case where x is null (i.e. is currently pointing to no object). The
Object class contains a method called toString that returns a string containing the run-time
class name of the object concatenated with the something like the memory address of the object
in base 16 (also known as hexadecimal) format. Since every class inherits from Object, every
object can have toString invoked upon it. Even better, every class X can override toString to
provide debugging information that is tailored to X. Therefore the toString method is convenient
for debugging. Since the toString method is a public method of the Object class it must
be overridden as a public method, since your overridden function cannot have weaker access
privileges.

2.6.16 Tutorial 16

This tutorial shows you a practical example of inheritance. The file StarWars.jtw is comprised
of three classes: XWing, TieFighter and StarWars. The first two represent spacecraft from
the two sides of the Star Wars films. The class StarWars is the driver class and contains code
for executing a battle between the X-Wings and the Tie Fighters.
Question 16.1: Study, compile and run the following code:

class XWing

private property int shields;

private property int weapon;

private property boolean dead;

constructor XWing()

shields = 1000;

weapon = 10;

method int getWeapon ()

return weapon;

method boolean isDead ()

return dead;

method void hit (int damage)

shields = shields - damage;

if (shields<0)

then

2.6. J.T.W. TUTORIALS 63

System.out.println(STRINGBGFG("BOOM!!!"));

dead = true;

class TieFighter

private property int shields;

private property int weapon;

private property boolean dead;

constructor TieFighter()

shields = 500;

weapon = 20;

method int getWeapon ()

return weapon;

method boolean isDead ()

return dead;

method void hit (int damage)

shields = shields - damage;

if (shields<0)

then

System.out.println(STRINGBGFG("BOOM!!!"));

dead = true;

class StarWars

private function void duel (XWing x, TieFighter t)

for (;;)

x.hit(t.getWeapon());

if (x.isDead())

then

System.out.println(STRINGBGFG("X-Wing is dead"));

break;

t.hit(x.getWeapon());

if (t.isDead())

64 CHAPTER 2. THE J.T.W. LANGUAGE

then

System.out.println(STRINGBGFG("Tie Fighter is dead"));

break;

private function void battle (XWing[] good, TieFighter[] evil)

var int g = 0;

var int e = 0;

var int goodDeaths = 0;

var int evilDeaths = 0;

while (g<good.length and e<evil.length)

System.out.println(STRINGBGFG("battling X-Wing #") + g + STRINGBGFG(" versus Tie

Fighter #") + e);

duel(good[g],evil[e]);

if (good[g].isDead())

then

g = g + 1;

goodDeaths = goodDeaths + 1;

if (evil[e].isDead())

then

e = e + 1;

evilDeaths = evilDeaths + 1;

var int finalGood = good.length - goodDeaths;

var int finalEvil = evil.length - evilDeaths;

System.out.println();

System.out.println(STRINGBGFG("Battle Report: X-Wings Tie Fighters"));

System.out.println(STRINGBGFG("--"));

System.out.println();

System.out.println(STRINGBGFG("Initial ships:") + good.length + STRINGBGFG(" ") + evil.length);

System.out.println();

System.out.println(STRINGBGFG("Killed ships:") + goodDeaths + STRINGBGFG(" ") + evilDeaths);

System.out.println();

System.out.println(STRINGBGFG("Final ships:") + finalGood + STRINGBGFG(" ") + finalEvil);

System.out.println();

if (finalGood>finalEvil)

then

System.out.println(STRINGBGFG("The rebel alliance is victorious!"));

else

System.out.println(STRINGBGFG("The dark side has conquered!"));

System.out.println();

2.6. J.T.W. TUTORIALS 65

beginMain

// defines the goodies array

var XWing[] goodies = new XWing[3];

// initializes the elements of the goodies array

for (var int i=0; i<goodies.length; i = i + 1)

goodies[i] = new XWing();

// defines the baddies array

var TieFighter[] baddies = new TieFighter[3];

// initializes the elements of the baddies array

for (var int i=0; i<baddies.length; i=i+1)

baddies[i] = new TieFighter();

battle(goodies,baddies);

endMain

Question 16.2: Compile and run this file to see the battle between the X-Wings and the Tie
Fighters unfold.
Question 16.3: If you look at the Java code for the XWing and TieFighter classes you will
notice that they are almost identical: They have the same methods and properties, the only
difference is that the XWing objects are initialized with a different value for their shields and
weapon properties to the TieFighter objects.
The next few questions will guide you through the process of using inheritance to eliminate this
unnecessary duplication of code. A new class called SpaceShip will be created and all of the
code that is common to XWing and TieFighter will be moved into this class. The XWing and
TieFighter classes will then be modified so that they both inherit from SpaceShip.
Question 16.4: The first step in this process is to create the outer shell of the SpaceShip class,
which you should now type in:

class SpaceShip

Question 16.5: Move the properties shields, weapon and dead out of the XWing and TieFighter
classes and into the SpaceShip class. You must change the privacy status of the properties from
private to protected. The protected modifier was invented as an intermediate level of privacy be-
tween public and private. Like private, it allows visibility to the same class in which the method
or property was defined, but unlike private it also allows visibility to sub-classes of the class in
which the method or property was defined.
Question 16.6: Move the three methods getWeapon, isDead and hit out of the XWing and
TieFighter classses and into the SpaceShip class. At this point, the XWing and TieFighter
classes should contain nothing but a constructor.

66 CHAPTER 2. THE J.T.W. LANGUAGE

Question 16.7: Finally, add the extends keyword to the first line of the XWing and TieFighter
classes:

class XWing extends SpaceShip

and

class TieFighter extends SpaceShip

Question 16.8: Compile and run your program again, making sure that it produces the same
results now that it is using inheritance.
Question 16.9: The SpaceShip class is a superclass of both XWing and TieFighter con-
taining everything that X-Wings and Tie Fighters contain in common. Because the role of the
SpaceShip class is simply to hold these commonalities, we might choose to label the class with
the abstract keyword:

abstract class SpaceShip

This prevents us from creating instances of the SpaceShip class. Without the abstract modifier,
we could happily create a new SpaceShip(), which would be an object that is not an X-Wing,
nor a Tie Fighter, but just a vague “space ship”. If we consider this to be a logical mistake then
we can use abstract to prevent such calls to the SpaceShip constructor. Change the class
SpaceShip to be abstract and observe how the compiler will not accept any lines of the form:

var SpaceShip s = new SpaceShip(); // compiler error

Remove the abstract keyword and notice how the compiler will then allow this line to compile.

2.6.17 Tutorial 17

Question 17.1: Study the following code:

class AnimalTest

private function void chatter (Animal[] a)

for (var int i=0; i<a.length; i=i+1)

a[i].talk();

beginMain

var Animal[] farm = { new Dog(),new Cow(),new Fish() };
var Animal[] ark = { new Dog(),new Dog(),new Cow(),new Cow(),new Fish(), new Fish() };
var Cow[] herd = { new Cow(),new Cow(),new Cow() };
chatter(farm);

chatter(ark);

chatter(herd);

endMain

class Animal

2.6. J.T.W. TUTORIALS 67

method boolean breathesUnderwater ()

return false;

method boolean isPredator ()

return false;

method void talk ()

class Dog extends Animal

method boolean isPredator ()

return true;

method void talk ()

System.out.println(STRINGBGFG("Woof woof!"));

Question 17.2: Write the following classes that sub-class the Animal class above: Cow, Cat,
Fish, and Whale.
Question 17.3: Write the Shark class which extends Fish class. Override all necessary
methods. For the sake of this example and the code that follows, suppose that shark’s talk

method prints out STRINGBGFG("Chomp Chomp!").
Question 17.4: Run the AnimalTest class to make sure that all the methods work correctly.
Question 17.5: Rewrite the chatter method so that it never calls the talk methods and
instead uses a series of if statements and the instanceof operator to test the run-time type of each
object in the a array. Here is some code to get you started:

private function void chatter (Animal[] a)

for (var int i=0; i<a.length; i=i+1)

if (a[i] instanceof Cow) then

System.out.println(STRINGBGFG("Moo!"));

else if (a[i] instanceof Cat) then

System.out.println(STRINGBGFG("Meow!"));

/* other code goes here */

68 CHAPTER 2. THE J.T.W. LANGUAGE

Note that the sub-classes must appear before super-classes in the above code, otherwise the wrong
message will be printed out for sub-classes.
Question 17.6: Why is the code from the last question not as good as calling each animal’s talk
method?

2.7 Proofs of concept for the J.T.W language

2.7.1 Proof of concept #1: A small collection of d-defmacros for your
use in client code

Study the following Elisp code which creates a pair of macros getter and setter , a macro

for implementing the singleton design pattern called singleton design pattern and a macro

foreach for implementing the iterator design pattern.

;; BEGIN FILE: ˜/dlisp/d-defmacro.el

;;; d-defmacro.el

;; Copyright (C) 2017 Davin Pearson

;; Emacs Lisp Archive Entry

;; Filename: d-defmacro.el

;; Author/Maintainer: Davin Max Pearson <http://davin.50webs.com>
;; Keywords: defmacros for defining macros in J.T.W.

;; Version: 1.0

;;; Commentary:

;; This file is part of GNU Java Training Wheels.

;;

;;; m4 limitation of warranty

;;; m4 install instructions (d-defmacro)

;;; Known Bugs:

;; None so far!

;;; Code:

;;(load-file "~/lisp++-projects/c++2lisp++-stage-1-purge-comments.el")

;;(load-file (concat (car load-path) "lisp++-mode.el"))

;;(load-file "~/lisp++-projects/lisp++2c++-cclass.el")

(safe-require ’d-flm)

(setq d-macro-list nil)

(defmacro d-defmacro (name &rest macro-form)

‘(progn
(setq d-macro-list (cons (quote , name) d-macro-list))
(defmacro , name (&rest rest)

,@ macro-form

)

))

;;(setq type "int")

;;(setq vari "v")

;;(setter int i)

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 69

(d-defmacro
getter

(setq type (nth 0 rest))

(setq vari (nth 1 rest))

(d-assert (cdr rest))

(d-assert (not (cdddr rest)))

(if (not (stringp type))

(setq type (prin1-to-string type)))

(if (not (stringp vari))

(setq vari (prin1-to-string vari)))

(setq prop nil)

(setq var (d-read-str (concat "getter-setter-prop--" type "--" vari)))

(when (not (and (boundp var) var))

(set var t)

(setq prop (concat "private " type " private " vari ";")))

(concat "public " type " get" (d-string-capitalise vari) "() "

"{ return private " vari "; }" prop "\n"))

(d-defmacro
setter
(setq type (nth 0 rest))

(setq vari (nth 1 rest))

(d-assert (cdr rest))

(d-assert (not (cdddr rest)))

(if (not (stringp type))

(setq type (prin1-to-string type)))

(if (not (stringp vari))

(setq vari (prin1-to-string vari)))

(setq prop nil)

(setq var (d-read-str (concat "getter-setter-prop--" type "--" vari)))

(when (not (and (boundp var) var))

(set var t)

(setq prop (concat "private " type " private " vari ";")))

(concat "public void set" (d-string-capitalise vari) "(" type " " vari ")"

" { this.private" vari " = " vari "; }" prop "\n"))

;; (d-compress-args ’("100" "200" "300" ")"))

(defun d-compress-args (rest)

(let ((ptr rest)

(result "(")

(count 0)) ;; (setq count 0)

(while ptr

(when (not (string= (car ptr) ")"))

(setq result (concat result (if (/= count 0) ",") (car ptr)))

(incf count))

(setq ptr (cdr ptr)))

(setq result (concat result ")"))

(cons result count)

) ;; end LET!

) ;; end DEFUN! d-compress-args

(defun d-get-class-list ()

(interactive)

(save-excursion
(save-match-data

(let (indent-str class-or-interface class-name p1 p2 list)

(goto-char (point-min)) ;; 1

(while (re-search-forward (concat "\\(^[\t]*\\)"

"\\(public[\t]+\\|abstract[\t]+\\|"

"final[\t]+\\|\\)*"

70 CHAPTER 2. THE J.T.W. LANGUAGE

"\\(class\\|interface\\) +"

"\\([A-Z][a-zA-Z0-9]*\\)") nil t)

;; 3 4

(setq indent-str (buffer-substring-no-properties (match-beginning 1)

(match-end 1)))

(setq class-or-interface (buffer-substring-no-properties (match-beginning 3)

(match-end 3)))

(setq class-name (buffer-substring-no-properties (match-beginning 4)

(match-end 4)))

(save-excursion
(beginning-of-line)

(setq p1 (point))

(cond

((save-excursion
(forward-line 1)

(beginning-of-line)

(looking-at "^[\t]*{"))

(forward-line)

(beginning-of-line)

(forward-sexp)

;;(if (string= class-name "Singleton")

;; (d-debug "Public Enemy / Mind Terrorist"))

(setq p2 (point)))

((save-excursion
(forward-line 1)

(beginning-of-line)

(looking-at "^[\t]*begin\\>"))

(re-search-forward (concat "^" indent-str "end[\t]*$") nil t)

(setq p2 (point)))

)

(setq list (cons (list class-or-interface class-name p1 p2) list))))

list))))

(defun d-are-we-inside-class (class)

(d-assert (stringp (nth 0 class)))

(d-assert (stringp (nth 1 class)))

(and (>= (point) (nth 2 class))

(<= (point) (nth 3 class))))

(defun d-find-matching-class (class-list)

(block nil

(let ((ptr class-list)) ;; (setq ptr class-list)

(while ptr
(when (d-are-we-inside-class (car ptr))

;;(message "* found d-are-we-inside-class class-list=%s (car ptr)=%s" ptr (car ptr))

;;(d-error "Foomatic")

(return (car ptr)))
(setq ptr (cdr ptr))))))

(defun d-get-enclosing-class ()

(let (class-list)

(setq class-list (d-find-matching-class (d-get-class-list)))
;;(d-error "Alien Syndrome / class-list=%s" class-list)

class-list))

;; (setq compress-args (d-compress-args ’("100" "200" "300")))

(d-defmacro
singleton design pattern

(let (ctor compress-args compressed-args compressed-count

list-of-classes matching-class count location)

(setq class (nth 1 (d-get-enclosing-class)))

(d-error (and "Public Enemy / How to Kill a Radio Consultant" class))

(with-temp-buffer
;;(when (get-buffer "*singleton*")

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 71

;; (kill-buffer "*singleton*"))

;;(switch-to-buffer (generate-new-buffer "*singleton*"))

(setq b2 (current-buffer))

;;(message "* rest=%s" rest)

(setq ctor (nth 0 rest))

(insert ctor)

(goto-char (point-min))

(while (re-search-forward "^\\([\t]*\\)constructor[\t]*(" nil t)

(replace-match (concat "\\1constructor " class "(") ’fixedcase))

(goto-char (point-min))

(d-assert (flm-re-search-forward–no-comments-no-strings "(" nil t))

(setq begy (point))

(setq compress-args (d-compress-args (cdr rest)))

(setq compressed-args (car compress-args))

(setq compressed-count (cdr compress-args))

(setq location (flm-re-search-forward–no-comments-no-strings "(" nil t))

(forward-char -1)

(forward-sexp)

(setq endy (point))

(goto-char begy)

(setq count 0)

(condition-case err

(while (<= (point) endy)

(cond

;; ---

((looking-at "[a-zA-Z0-9]")

(skip-chars-forward "a-zA-Z0-9 ")

;;(message "* [a-zA-Z0-9] (point)=%s line=(%s) count=%s"

;; (point) (d-current-line-as-string) count)

)

;; ---

((looking-at "[\t\r\n]")

(skip-chars-forward " \t\r\n")

;;(message "skip-chars-forward \\t\\r\\n (point)=%s" (point))

;;(d-debug "Public Enemy / Don’t Believe the Hype")

)

;; ---

((looking-at ",")

(incf count)

;;(message "* (point)=%s line=(%s) incf count=%s" (point)

;; (d-current-line-as-string) count)

(forward-char)

;;(d-debug "Cold Lampin’ with Flavor")

)

;; ---

((looking-at "/*")

(forward-sexp))

;; ---

((looking-at "\"")

;;(error "* inside string")

(forward-sexp))

;; ---

((looking-at "//")

(forward-line)

(beginning-of-line))

;; ---

((looking-at "(")

(forward-sexp))

;; ---

((looking-at ")")

(forward-char)

)

72 CHAPTER 2. THE J.T.W. LANGUAGE

;; ---

((looking-at "<")

(forward-sexp))

;; ---

((looking-at "{")

(let ((debug-on-error nil))

(error "{ found in arg list")))

;; ---

(t

(message "Misc case (point)=%s" (point))

(forward-char))))

(error

(message "Error err=%s" (prin1-to-string err))))

(incf count) ;; NOTE: one more than the number of commas

(let ((debug-on-error nil))

(when (/= count compressed-count)

(d-debug "(/= count compressed-count): count=%s compressed-count=%s" count compressed-count)))

;;(d-debug "Public Enemy / Raise the Roof (point)=%s" (point))

(setq ctor (buffer-substring-no-properties (point-min) (point-max)))

(setq str (concat "private " ctor

"private classVar " class " private instance;"

"public function " class " getInstance()"

"{"

"if (private instance != null) then "

"{"

"return private instance;"

"}"

"else"

"{"

"return private instance = new " class compressed-args ";"

"}"

"}"))

;;(message "str=%s" str)

str

) ;; end WITH-TEMP-BUFFER!

) ;; end LET!

) ;; end D-DEFMARO! singleton design pattern

(defun split-string-into-csv (str)

"Note: csv stands for Comma Separated Values"

(with-temp-buffer
;;(when (get-buffer "*csv*")

;; (kill-buffer "*csv*"))

;(set-buffer (generate-new-buffer "*csv*"))

;;(switch-to-buffer (current-buffer))

(setq b3 (current-buffer))

;;(switch-to-buffer b3)

(d-assert (stringp str))

(insert str)

(jtw-mode)
;;(d-debug "Public Enemy / Public Enemy No. 1")

;;(let ((debug-on-error nil))

;; (error "Prince / Forever in my life"))

(let ((done nil)

(endy nil)

(p0 (goto-char (1+ (point-min))))

(p1 nil)

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 73

(list nil)

(depth 0))

(while (not endy)

(while (not done)

(message "* schmu depth=%s looking-at=\"%s\""
depth

(buffer-substring-no-properties (point) (jtw–clamp-point (+ (point) 10))))

(condition-case err

(cond

((looking-at "{")

(condition-case err

(forward-sexp)

(error

(forward-char)

(incf depth))))

((looking-at ",")

(forward-char 1)

(when (= depth 0)

(setq done t)))

((looking-at "<")

(condition-case err

(progn
(forward-sexp)

(cond

((save-excursion
(backward-char)

(looking-at ">"))

;; DO NOTHING!

)

((save-excursion
(backward-char)

(looking-at ")"))

(decf depth)

)))

(error

(forward-char)

(incf depth))))

((looking-at "[a-zA-Z0-9]+")

(skip-chars-forward "a-zA-Z0-9 "))

((looking-at "[\t\r\n]+")

(skip-chars-forward " \t\r\n"))

((eobp)

(setq done t)

(setq endy t))

((and (looking-at ")") (> depth 0))

(decf depth)

(when (= depth 0)

(setq done t)

(setq endy t)

))

((looking-at "(")

(condition-case err

(forward-sexp)

(error

(forward-char)

(incf depth))))

((looking-at "[")

(condition-case err

(forward-sexp)

(error

(forward-char 1)

(incf depth))))

74 CHAPTER 2. THE J.T.W. LANGUAGE

((looking-at "\\]")

(forward-char)

(decf depth))

((looking-at "//")

(forward-sexp))

((looking-at "/*")

(forward-sexp))

((looking-at "\"")

(forward-sexp))

(t

(forward-char)

))

(error

;;(message "Error err=%s" (prin1-to-string err))

(cond

((eq (car err) ’invalid-regexp)

;;(d-debug "invalid-regexp %s" (prin1-to-string err))

(forward-char)

(setq done t))

((eq (car err) ’end-of-buffer)

;;(d-debug "end-of-buffer %s" (prin1-to-string err))

(setq done t)

(setq endy t))

((eq (car err) ’scan-error)

(let ((debug-on-error nil))

(error "scan error %s" (prin1-to-string err)))

(setq done t)

(setq endy t))

(t

(let ((debug-on-error nil))

(error "Misc error: %s" err)))

))))

(setq done nil)

(setq p1 (point))

(setq str (buffer-substring-no-properties p0 (1- p1)))

(setq p0 p1)

;;(d-debug "foomatic")

;;(d-assert (null list))

(setq list (cons str list))

;;(sit-and-message 3 "list=%s" list)

)

;;(d-debug "Prince / It’s Gonna Be a beautiful night")

(setq list (nreverse list)))))

(defun splat-list (list)

;;(setq args (eval args))

(let ((done nil)

(i 0)

(result nil))

(while (not done)

(if (nth i list)

(setq result (cons (nth i list) result))

(setq done t))

(incf i)

)

(setq list (mapcar (function (lambda (x) ‘(quote ,x))) list))

list))

(defun fcall (func &rest args)

(eval ‘(,func ,@args))

)

(d-defmacro
foreach
(setq vrbl (nth 0 rest))

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 75

(setq list (nth 1 rest))

(message "vrbl=%s" vrbl)

(message "list=%s" list)

(d-assert (null (cdddr rest)))

;;(d-assert (null (nth 3 rest)))

(concat "for (Iterator " vrbl "= " list ".getIterator(); "

"!" vrbl ".isDone(); "

vrbl ".next())")

)

(d-defmacro
null macro

(message "(nth 0 rest)=%s" (nth 0 rest))

(concat "public property String s = " (prin1-to-string (nth 0 rest)) ";"))

(provide ’d-defmacro)

;; END FILE: ˜/dlisp/d-defmacro.el

Study the following fragment of jtw-build-java.el (see 2.13.1) which deals with macros:

;; BEGIN FILE: el/d-defmacro.el

(progn
(setq ptr d-macro-list)
(while ptr

(while (re-search-forward (prin1-to-string (car ptr)) nil t)

(when (not (warn–inside-comment-or-string))
(beginning-of-line)

(setq p0 (point))

(skip-chars-forward "a-zA-Z0-9 \t\r\n")

(setq p1 (point))

(if (not (looking-at "("))

(let ((debug-on-error nil))

(error "*** Not looking at \"(\" expression")))

(forward-sexp 1)

(setq p2 (point))

(setq str (buffer-substring-no-properties p1 p2))

(delete-region p0 p2)

(setq args (split-string-into-csv str))

(insert (eval ‘(fcall (car ptr) ,@ (splat-list args))))

))

(setq ptr (cdr ptr))))

;; END FILE: el/d-defmacro.el

Here is some J.T.W. code that uses the getter and setter macros:

// BEGIN FILE: jtw-tutorials/Foo.jtw

class Foo
begin

getter (int,foo)

setter (int,foo)

getter (int,bar)

setter (int,bar)

end
// END FILE: jtw-tutorials/Foo.jtw

Here is the resulting Java code:

76 CHAPTER 2. THE J.T.W. LANGUAGE

// BEGIN FILE: jtw-tutorials/Foo.java

class Foo
{

public int getFoo () { return private foo ; }

public void setFoo (int foo) { private foo = foo; }

private int private foo ;

public int getBar () { return private bar ; }

public void setBar (int bar) { private bar = bar; }

private int private bar ;

}
// END FILE: jtw-tutorials/Foo.java

Note that the properties private foo and private bar are automatically created when you
call one of getter or setter macros. This is not the case for the Lisp++ version of the getter

and setter macros.

(class X private property int i; private property int j; singleton design pattern (constructor

(int i, int j, /* rest of args */)

{ this.i = i; this.j = j; /* rest of ctor code */},100,200,/* rests of ctor parameters */)

)

which generates the following Java code:

class X

{
private property int i;

private property int j;

private X(int i, int j)

{
this.i = i;

this.j = j;

}
private X private instance;

public static X getInstance ()

{
if (private instance != null)

{
return private instance ;

}
else

{
return private instance = new X(100,200);

}
}

}

The foreach macro is called like so:

// BEGIN FILE: jtw-tutorials/IteratorTest.jtw

class Node
begin

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 77

property Object current;

property Node next;

constructor Node(Object current)

begin
this.current = current;

end
end

interface Iterator
begin

public method Iterator first ();

public method void next ();

public method boolean isDone ();

public method Object currentItem ();

end

class SinglyLinkedListIterator implements Iterator
begin

property Node first;

property Node current;

constructor SinglyLinkedListIterator(Node first)

begin
this.first = first;

this.current = first;

end

public method SinglyLinkedListIterator first ()

begin
return new SinglyLinkedListIterator(first);

end

public method void next ()

begin
if (current != null) then
begin

current = current.next;

end
end

public method boolean isDone ()

begin
return current == null;

end

public method Object currentItem ()

begin
return current.current;

end
end

class SinglyLinkedList
begin

property Node first;

public method Iterator getIterator ()

begin
return new SinglyLinkedListIterator(first);

end

public method void addElement (Object o)

begin
var Node n = new Node(o);
n.next = first;

78 CHAPTER 2. THE J.T.W. LANGUAGE

first = n;

end
end

class IteratorTest
begin

beginMain
System.out.println "Welcome to IteratorTest");

var SinglyLinkedList list = new SinglyLinkedList();
list.addElement(123);

list.addElement(456);

list.addElement(789);

list.addElement "apple");

list.addElement "banana");

list.addElement "carrot");

var int i = 0;

foreach (n,list)

begin
System.out.println "i=" + i + ", " + n.currentItem());

i++;

end
System.out.println();

endMain
end
// END FILE: jtw-tutorials/IteratorTest.jtw

The above code results in the following print out:

Welcome to IteratorTest

i=0, carrot

i=1, banana

i=2, apple

i=3, 789

i=4, 456

i=5, 123

2.7.2 Proof of concept #2: A superfor macro

One application of the Java preprocessor is the superfor macro, which is an enhanced BASIC-style
for loop. Here is how to invoke the superfor macro in your *.jtw file:

// BEGIN FILE: jtw-tutorials/SuperFor.jtw

class SuperFor
begin

beginMain
System.out.println "Welcome to SuperFor.jtw")

superfor (var int i = 0 to 10)

begin
System.out.println "i=" + i);

end
endMain

end
// END FILE: jtw-tutorials/SuperFor.jtw

The above code results in the following printout:

Welcome to SuperFor.jtw

i=0

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 79

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

The step size argument is optional, here is an example with an explicit step size announced:

// BEGIN FILE: jtw-tutorials/SuperFor2.jtw

class SuperFor2
begin

beginMain
System.out.println "Welcome to SuperFor2.jtw")

superfor (var int i = 0 to 10 step 2)

begin
System.out.println "i=" + i);

end
endMain

end
// END FILE: jtw-tutorials/SuperFor2.jtw

The above code results in the following printout:

Welcome to SuperFor2.jtw

i=0

i=2

i=4

i=6

i=8

i=10

If the downto keyword is given instead of the to keywords then the loop will count downwards
from the first given number to the second, even if a positive step size is given. Here is an example
with a negative step size:

// BEGIN FILE: jtw-tutorials/SuperFor3.jtw

class SuperFor3
begin

beginMain
System.out.println "Welcome to SuperFor3.jtw")

superfor (var int i = 10 downto 0 step 2)

begin
System.out.println "i=" + i);

end
endMain

end
// END FILE: jtw-tutorials/SuperFor3.jtw

The above code results in the following printout:

80 CHAPTER 2. THE J.T.W. LANGUAGE

Welcome to SuperFor3.jtw

i=10

i=8

i=6

i=4

i=2

i=0

Note that the specification of the superfor macro doesn’t need constants as the values of start,
stop and step-size. They can be any variable or more generally any Java expression, and those
expressions will be evaluated only once, should your code have side effects, i.e. changes the value of
a variable in your code. In the following code, the expression ++x has the side effect of incrementing
the value of x before returning the value of x. Similarly for fooVariable. See the following code:

// BEGIN FILE: jtw-tutorials/SuperFor4.jtw

class SuperFor4
begin

classVar int fooVariable = 22;

function int foo ()

begin
return ++fooVariable;

end

function int bar ()

begin
return 2;

end

beginMain
System.out.println "Welcome to SuperFor4.jtw")

var int x = 15;

superfor (var int i = foo() - bar() to (2 * ++x))

begin
System.out.println "i=" + i);

end
endMain

end
// END FILE: jtw-tutorials/SuperFor4.jtw

The above code results in the following printout:

Welcome to SuperFor4.jtw

i=21

i=22

i=23

i=24

i=25

i=26

i=27

i=28

i=29

i=30

i=31

i=32

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 81

Elisp source code for the superfor macro

The following code belongs in the file jtw-build-java.el which in itself is too large for inclusion
in this book (2,900+ lines of code). You can find this code by visiting the following Website:

davin.50webs.com/J.T.W/tutorial-01-HelloWorld.html

and clicking on the tarball in Question 1.1. Alternatively, you can study this fragment of the file
jtw-build-java.el which deals with the superfor macro.

;; BEGIN FILE: el/superfor.el

(let (p1 p2 str form type variable T var start stop

step-size step-size-2 this start this stop this step

this step size file line p-prior beg0 end0

(case-fold-search nil) from to step keyword-to

keyword-step-size)

(setq strobe nil)

(checkpoint "2")

(save-excursion
(goto-char (point-min))

(setq *superfor* 0)

(while (re-search-forward "\\<superfor\\>" nil t)

(checkpoint "found superfor...")

(setq beg0 (match-beginning 0))

(setq end0 (match-end 0))

;;(checkpoint "sitting for 1 seconds...")

(font-lock-fontify-buffer)

(when (save-excursion
(save-match-data

(re-search-forward "(" (point-at-eol) t)

(forward-char -1)

(re-search-forward "\\<var\\>" (point-at-eol) t)

(not (warn–inside-comment-or-string))))
;;superfor (var int i = 0 to 10)

;;(error "Smelly cat")

(setq *current-buffer* (current-buffer))

(setq p1 beg0)

(skip-chars-forward " \t\r\n")

(when (not

(save-match-data

(looking-at "{")))

;; EVAL HERE! vvv

(setq p2 ;; EVAL HERE! nnn

(save-excursion
(forward-sexp 1)

(point)))

(setq str (buffer-substring-no-properties end0 p2))

(checkpoint "str=%s" str)

(setq form (read-str str))

(checkpoint "form=%s" form)

;;(d-debug "form")

;;(d-assert (consp form))

(message "*** form=%s" form)

;;(setq debug-on-error nil)

;;(error "The Rolling Stones / Rolling Stones plays Cuba")

(message "(deleted-region=%s)" (buffer-substring-no-properties p1 p2))

(delete-region p1 p2)

(incf *superfor*)

(setq this (format "superfor %d " *superfor*))

(when (not (eq (nth 0 form) ’var))

(warn–log-message "Error 35: Keyword var missing from superfor construct")

http://davin.50webs.com/J.T.W/tutorial-01-HelloWorld.html

82 CHAPTER 2. THE J.T.W. LANGUAGE

)

(when (eq (nth 0 form) ’var)

(if (and (not (eq (nth 1 form) ’char))

(not (eq (nth 1 form) ’short))

(not (eq (nth 1 form) ’int))

(not (eq (nth 1 form) ’long))

(not (eq (nth 1 form) ’float))

(not (eq (nth 1 form) ’double)))

(warn–log-message (concat

"Error 37:#2 argument type to superfor macro must be"

" one of char/short/int/long/float/double")))

;; (setq form ’(var int i=0 to stop))

;; (setq form ’(var int i =0 to stop))

;; (setq form ’(var int i = 0 to stop))

(progn
(setq form-str (aref (eval ‘(d-prin1-to-string-java ,form sexy)) 0))

(when (string-match "^var[\t]*" form-str)

(setq form-str (substring form-str (match-end 0))))

(when (string-match "^\\(char\\|short\\|int\\|long\\|float\\|double\\)\\>" form-str)

(setq T (substring form-str (match-beginning 0) (match-end 0)))

(setq form-str (d-trim-string (substring form-str (match-end 0))))

(when (string-match "[^<>]=" form-str)

(setq var (substring form-str 0 (1+ (match-beginning 0))))

(setq form-str (substring form-str (1+ (length var))))

))

(cond

((string-match "\\<to\\>" form-str)

(message "found to")

(setq keyword-to ’to)

(setq start (d-trim-string (substring form-str 0 (match-beginning 0))))

(setq form-str (d-trim-string (substring form-str (match-end 0))))

)

((string-match "\\<downto\\>" form-str)

(message "found downto")

(setq keyword-to ’downto)

(setq start (d-trim-string (substring form-str 0 (match-beginning 0))))

(setq form-str (d-trim-string (substring form-str (match-end 0))))

)

) ;; END COND!

)

;;(d-debug "Duran Duran / Girls on Film")

;;(setq form ’(var int i = 0 to 10 step 2))

(progn

(if (string-match "\\<step\\>" form-str)

(progn
(setq keyword-step-size t)

(setq stop (d-trim-string (substring form-str 0 (match-beginning 0))))

(setq step (d-trim-string (substring form-str (match-end 0))))

)

(setq keyword-step-size nil)

(setq stop (d-trim-string form-str))

(setq step nil)

)

;;(setq start form)

;;(when (string-match "=" start)

;; (setq start (substring start (match-end 0))))

;;(when (string-match "\\<to\\>" start)

;; (setq start (d-trim-string (substring start 0 (match-beginning 0)))))

;;(setq rest1 (eval ‘(d-prin1-to-string-java , form step)))

;;(setq stop (aref rest1 0))

;;(when (string-match "\\<to\\>" stop)

;; (setq stop (d-trim-string (substring stop (match-end 0)))))

;;(setq keyword-step (car (aref rest1 1)))

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 83

;;(when keyword-step

;; (setq step (aref rest1 1))

;; (when (eq keyword-step ’step)

;; (setq step (cadr (aref rest1 1)))

;; (if step (setq keyword-step-size ’step))))

) ;; END PROGN!

;;(d-debug "Art Blakey / Lou’s Blues")

(progn ;; (warn--cull-quotes)

;;(setq var eq)

(setq start-2 (warn–splat-quest start))

(setq stop-2 (warn–splat-quest stop))

(setq step-size-2 (warn–splat-quest step))

) ;; END PROGN!

;; ---

;;(d-debug "The Pretenders / Precious")

(setq this start (concat this "start"))

(setq this stop (concat this "stop"))

(setq this step (concat this "step"))

(setq this step size (concat this "step size"))

;;(d-debug "Dire Straits / My Parties")

(insert (concat (concat "var " T " " this start " = " start-2 "; ")

(concat "var " T " " this stop " = " stop-2 "; ")

(if keyword-step-size

(concat "var " T " " this step " = " step-size-2 "; "

"var " T " " this step size " = "

(cond

((eq keyword-to ’to)

(concat "Math.abs(" this step ")"))

((eq keyword-to ’downto)

(concat "-Math.abs(" this step ")"))

(t

(d-debug "Dire Straits / Heavy Fuel")))

";\n"
)

(concat "var " T " " this step size " = "

(cond

((eq keyword-to ’to)

"1")

((eq keyword-to ’downto)

"-1")

(t

(d-debug "Dire Straits / Ticket to Heaven")))

";\n"

) ;; END CONCAT!

) ;; END IF!

) ;; END CONCAT!

) ;; END INSERT!

) ;; END PROGN!

;;(d-debug "Rod Stewart / Hot Legs")

(setq line 0)

(setq p-prior

(save-excursion
(beginning-of-line)

(setq str (concat "^[\t]*//+ " *pp-namespace* "#location[0-9]"

" (\\(" *drive-spec* "[-a-zA-Z0-9 ./]+\\):\\([0-9]+\\))"))

(if (or (looking-at str) (re-search-backward str nil t))

(progn
;;(d-debug "Antonio Vivaldi")

(setq file (buffer-substring-no-properties (match-beginning 1)

84 CHAPTER 2. THE J.T.W. LANGUAGE

(match-end 1)))

(d-assert (stringp file))

(setq line (read-str (buffer-substring-no-properties (match-beginning 3)

(match-end 3))))

(d-assert (integerp line))

(point)

)

(setq file (concat *def-dir* *stump* ".jtw"))

(setq line 1)

(goto-char (point-min))

(forward-line 2)

(point)

)))

(setq line (+ line (count-lines p-prior (point))))

(decf line)

(decf line)

(insert (format "// %s ’%s\n" *list-namespace* (prin1-to-string file-stack)))

(insert (format "// %s#location3 (%s:%d)\n" *pp-namespace* file line))

(insert (concat "for (var " T " " var " = " this start ";"

" ((" this step size " > 0) ? " var " <= "

this stop " : " var " >= " this stop "); "

var " += " this step size ")"))

(if strobe (d-debug "Pretenders / The Wait"))

;;(d-debug "Yehudi Menuhin")

) ;; END WHEN!

) ;; END WHEN!

) ;; END WHILE!

) ;; END SAVE-EXCURSION!

) ;; END LET!

;; END FILE: el/superfor.el

A bug in J.T.W. superfor

The question mark operator a ? b : c which expands to

type result;

if (a) then

begin

result = b;

end

else

begin

result = c;

end

where type can be any Java type directly supported by the arguments to the superfor macro
in J.T.W., namely char, short, int, long, float and double. Elsewhere the question mark is
supported. Instead in the superfor macro you have to write the following code to get a question
mark operator online:

// BEGIN FILE: jtw-tutorials/SuperFor5.jtw

class SuperFor5
begin

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 85

beginMain
System.out.println "Welcome to SuperFor5.jtw");

foo(1,2);

endMain
function void foo (int x, int y)

begin
superfor (var int i=0 to (x < y) QUEST 10 : 20))

begin
System.out.println "i=" + i);

end
System.out.println();

end
end

// END FILE: jtw-tutorials/SuperFor5.jtw

where the symbol QUIST compiles into a question mark: ? When built, the program prints out
the following:

Welcome to SuperFor5.jtw

i=0

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

2.7.3 Proof of concept #3: File inclusion

When your classes become large and unwieldy, it becomes useful to split a source file into several
compilation units. The most natural division into compilation units is at the level of methods.
With each method in a separate file you can manage methods that are excessively large. Here
is how to use file inclusion in the J.T.W. language. First comes the *.jtw file with all bodies of
methods harvested from them:

class Foo

include STRINGBGFG("apple.method")

include STRINGBGFG("banana.method")

include STRINGBGFG("carrot.method")

Here are the files that get included. The first file is apple.method:

property int prop; /* property for use with apple method */

method void apple (/* parameters */)

prop = prop + 1;

/* rest of body of apple method */

86 CHAPTER 2. THE J.T.W. LANGUAGE

The second file is banana.method:

method void banana (/* parameters */)

/* body of banana method */

The third file is carrot.method:

method void carrot (/* parameters */)

/* body of carrot method */

When all of the file inclusions have been carried out by the J.T.W. to Java compiler, the code
that javac sees will be something like this:

/** Automatically generated file. Do not edit! */

// #foomatic #location (Foo.jtw:1)

class Foo

{
// #foomatic #location (apple.method:1)

int prop;

void apple (/* parameters */)

{
prop = prop + 1;

/* rest of body of apple method */

}
// #foomatic #location (banana.method:1)

void banana (/* parameters */)

{
/* body of banana method */

}
// #foomatic #location (carrot.method:1)

void carrot (/* parameters */)

{
/* body of carrot method */

}
// #foomatic #location (Foo.jtw:6)

}

Note the use of the value #foomatic of the string *pp-namespace* (where pp stands for pre-
processor) that is a long arbitrarily defined string to prevent accidental aliasing with the rest of
the commented code that the user of the system might write. The #location directives are used
to keep track of the original line number in the source file. Using Emacs batch mode executing the
Elisp code: jtw-build-java.el (see 2.13.1), error messages in Foo.java now point back to the
original Foo.jtw file, or one of the files that get #included like so: apple.method, banana.method
or carrot.method.

NOTE: Version 1.0 of J.T.W. used the C Pre-Processor (C.P.P.) to manage the #location

directives but unfortunately C.P.P. destroys comments in the target file, and Java uses /** . . .
*/ comments to document the program’s behaviour so C.P.P. cannot be used.

2.8. JAVA/J.T.W./C++ CODING PREFERENCES 87

2.8 Java/J.T.W./C++ coding preferences

Many a religious war has been fought over coding preferences, how code should be named and
indented. I started programming when I was 5 years old in 1978 so over my 40 years as a computer
programmer I have gravitated to the following coding preferences. Here I present them to you now,
and I also explain their rationale so that their use is not mindlessly following my own religious ideas
but rather practical conventions for improving the readability of program code. The recommended
preferences for indenting J.T.W. code is as follows:

begin

/* code goes here */

begin

/* code goes here */

begin

/* code goes here */

end

/* code goes here */

end

/* code goes here */

end

In Emacs you can get the above indentation online by putting the following command in your
~/.emacs file, where ˜ is an abbreviation for the contents of your HOME environment variable.

(setq c-basic-offset 3)

instead of:

begin begin /* code goes here */ end begin /* code goes here */ end end

or similar coding styles. The rationale for placing ends in equal alignment with begins is so that
even on long lines, the begin and end symbol are not truncated away from view, unless you are
not looking at column zero, which is a rare event, or you have a pathologically deep level of nesting
of your squigglies (curly braces) i.e. more than screen width divided by tab width = 80 / 3 = 26
on my system. Note that in Emacs, screen-width is a function and tab-width is a variable so
you can calculate this value in your version of Emacs by evaluating the following code:

(/ (screen-width) tab-width).

In Emacs activate Control-x Control-e at the end of the above Lisp form to execute that code.
The only place where this falls down is where you have excessively long lines which are ugly no
matter how your editor chooses to display them. In Emacs the variable truncate-lines can
either be set to t in which long lines keep the screen scrolling to the right hand side of the screen.
When nil the lines wrap around inside the visible window of the screen. Both approaches look
ugly in my opinion. Luckily the programmer is able to reformat their code so that excessively long
lines do not occur. This coding preference for J.T.W. code translates into the following preference
for Java and C/C++ code:

{
/* code goes here */

{
/* code goes here */

{
/* code goes here */

88 CHAPTER 2. THE J.T.W. LANGUAGE

}
/* code goes here */

}
/* code goes here */

}

The much maligned Hungarian Notation is recommended so that syntax highlighting can be ap-
plied to keywords. The term “Hungarian Notation” comes from the fact that under the worst
instances of Hungarian notation such as m piMax your code looks as indecipherable as the Hungar-
ian language is to Westerners. In Hungarian notation, private propertys and methods should
be named with a preceding underscore like so: foo or something similar like private foo .

The famous book Design Patterns by [GRHV95] uses an underscore at the beginning of a word
to indicate that that variable is private. The following Elisp code can allow private propertys
to be highlighted in a different color from the rest of your code:

;; BEGIN FILE: ˜/dlisp/d-flock-private.el

;; END FILE: ˜/dlisp/d-flock-private.el

Simply place this code into your file .emacs in your HOME directory and run Emacs to activate this
syntax highlighting feature. If such a file does not exist, it will be necessary to create one.
Java and J.T.W. conventionally name variables in “caMeL” case, i.e. component words con-
catenated together and using uppercase letters to delimit the sub-words of a given expression.
Examples are like so: setFoo() and getFoo(). In C and C++ symbols are conventionally named
with underscores like so: set foo() and get foo(). If you follow these conventions, your code
will be easier to read by the large number of other programmers who follow these conventions.

2.9 Parenthesis and squigglies { . . . } instead of begin . . .
end

It is sometimes said that Lisp stands for Lots of Irritating Superfluous Parentheses. But in reality
Lisp is for the expert coder who prefers their programming to be deeply nested. In the same vein,
going from BASIC to Java involves getting used to squigglies { ... } all over the place. The
Basic coder will soon find that { ... } operators are a useful tool for managing the complexity
of a program. While learning a program language for the first time however, the programmer will
like as much help as the compiler can give you, which includes supporting the begin and end
constructs.

2.10 Troubleshooting J.T.W. code

The Elisp file jtw-build-java.el (see 2.13.1) contains code for GNU Emacs to parse and trou-
bleshoot problematic J.T.W. code. The following errors produce a diagnostic:

• Error 1: method needs a return type.

• Error 2: function needs a return type.

• Error 3: constructors need the correct class name.

• Errors 5-13: Cannot have more than one of property, classVar, function, method or
constructor on the same line.

• Error 14: This line needs one of the following keywords: function, method, classVar,
property or constructor.

2.10. TROUBLESHOOTING J.T.W. CODE 89

• Error 15: Functions cannot reside inside functions/methods/constructors.

• Error 16: Function must have begin on the following line.

• Error 17: Constructors cannot reside inside functions/methods/constructors.

• Error 18: constructor must have begin on the following line.

• Error 19: Methods cannot reside inside functions/methods/constructors.

• Error 20: Method must have begin on the following line.

• Error 21: Property must not have begin on the following line.

• Error 22: Class variable must not have begin on the following line.

• Error 23: Expecting (after if statement.

• Error 24: Unbalanced parentheses after if statement.

• Error 25: Expecting then keyword after if statement.

• Error 26: More ends than begins.

• Error 27: Missing ends at the end of the file.

• Error 28: Spurious semicolon at the end of the line.

• Error 29: Cannot call a method without an object from the main function.

• Error 30: Cannot call a method with a class name prefix from the main function.

• Error 31: Cannot call a method without an object from a function.

• Error 32: Cannot call a method with a class name prefix from a function.

• Error 33: Cannot call a method without an object from a method.

• Error 34: Cannot call a method without an object from a constructor.

• Error 35: Keyword var missing.

• Error 36: Keyword var does not belong here.

• Error 37: argument type to superfor macro must be one of char/short/int/long/float/double.

• Error 38: function outside of a class.

• Error 39: method outside of a class.

• Error 40: property outside of a class.

• Error 41: Class variable outside of a class.

• Error 42: Cannot have a function inside an interface.

• Error 44: Class X has no function named foo.

• Error 45: Class X has no classVar named foo.

• Error 46: Function Foo.bar() not found.

• Error 47: ClassVar Foo.classVar not found.

• Error 48: Infinite loop in include directives.

• Error 49: class X has multiple instances.

90 CHAPTER 2. THE J.T.W. LANGUAGE

2.11 Mapping from J.T.W. to Java

The J.T.W. language maps to the Java language in a natural and straightforward way, making it
easy to learn Java, once you know the J.T.W.language. Here is the actual mapping of keywords
from J.T.W. to Java:

function → static
var → nothing
classVar → static
property → nothing
method → nothing
constructor → nothing
begin → {
end → }
beginMain → public static void main (String args) {
endMain → }
and → &&

or → ||

then → nothing
elseif → else if

2.11.1 Choosing a preprocessor language for J.T.W.

Note that these J.T.W. keywords on the left hand side of the above diagram should not map to
their Java equivalents inside strings and comments. The transformation was originally written
to use the m4 language to map J.T.W. onto Java but this approach had the disadvantage that
keywords like begin and end inside strings were mapped to their Java equivalents like so:

System.out.println(STRINGBGFG("function")); → System.out.println(STRINGBGFG("static"));

System.out.println(STRINGBGFG("var")); → System.out.println(STRINGBGFG(""));

System.out.println(STRINGBGFG("classVar")); → System.out.println(STRINGBGFG("static"));

System.out.println(STRINGBGFG("property")); → System.out.println(STRINGBGFG(""));

System.out.println(STRINGBGFG("method")); → System.out.println(STRINGBGFG(""));

System.out.println(STRINGBGFG("constructor")); → System.out.println(STRINGBGFG(""));

System.out.println(STRINGBGFG("begin")); → System.out.println(STRINGBGFG("{"));
System.out.println(STRINGBGFG("end")); → System.out.println(STRINGBGFG("}"));
System.out.println(STRINGBGFG("beginMain")); → System.out.println(STRINGBGFG("public static

void main(String[] args) {"));
System.out.println(STRINGBGFG("endMain")); → System.out.println(STRINGBGFG("}"));
System.out.println(STRINGBGFG("and")); → System.out.println(STRINGBGFG("&&"));

System.out.println(STRINGBGFG("or")); → System.out.println(STRINGBGFG("||"));
System.out.println(STRINGBGFG("then")); → System.out.println(STRINGBGFG(""));

System.out.println(STRINGBGFG("elseif")); → System.out.println(STRINGBGFG("else if"));

which is of course the wrong behaviour. A hack to get around this limitation is to break apart the
J.T.W. keywords like so:

System.out.println(STRINGBGFG("be") + STRINGBGFG("gin"));

This problem can be fixed for good either by using Flex to compile J.T.W. into Java or to use
Emacs to do the same thing, only a little slower than what Flex can do. In the end I chose GNU
Emacs as the host for the preprocessor language J.T.W. because it is free software and is adequate
for my programming needs and is more powerful than Flex or m4. To remedy this deficiency
Emacs’ batch mode is used to do the transformation from J.T.W. to Java. This implies that GNU
Emacs must be present on the client’s system to do the J.T.W. to Java mapping. Of course, there

2.11. MAPPING FROM J.T.W. TO JAVA 91

is no compulsion to use Emacs as an editor, although there are a couple of advantages in doing
this. Number one is that J.T.W. keywords, comments and strings have syntax highlighting .
And number two is that Emacs can do correct automatic indentation of J.T.W. code.

2.11.2 Piping the output of javac and java

Output from the executables javac and java have their standard output stream and error stream
piped into Emacs’ batch mode so that error messages like Foo.java:123 point back to the correct
file even if file inclusion (see §2.7.3) has been used. The programs grep and sed are also used as
pipes in the transformation process so they must be present on the client’s system.

2.11.3 The GNU Makefile for building *.java files and *.class files

Here is the Makefile that is used to build *.java files from *.jtw files and *.class files from
*.java files and finally executing *.class files:

.PRECIOUS:

.PRECIOUS: %.java %.class

JAVAC FLAGS = -source 1.5 -Xlint:unchecked -Xlint:deprecation -Xlint:-options

JAVA FLAGS = -enableassertions

SHELL = /bin/bash

PREFIX = /usr/

TELEPHONE = telephone-1800-NEW-FUNK

build-class-db:

@echo STRINGBGFG("* Stage 0 : Building class database")

emacs --batch --eval STRINGBGFG("(setq dir \"$(PREFIX)/share/emacs/site-lisp/dlisp/\")") \
--load $(PREFIX)/share/emacs/site-lisp/dlisp/jtw-build-class-db.el --funcall doit

%.java : %.jtw

@echo STRINGBGFG("* Stage 1 : Debugging $*.jtw and building $*.java file") \
emacs --batch --eval STRINGBGFG("(setq *stump* \"$*\")") \

--load $(PREFIX)/share/emacs/site-lisp/dlisp/jtw-build-java.el \
--funcall doit

%.class: %.java

@echo STRINGBGFG("* Stage 2 : Debugging *.java file(s) and building *.class file(s)")

javac $(JAVAC FLAGS) $$(find . -name STRINGBGFG("*.java")) |& emacs --batch \
--load $(PREFIX)/share/emacs/site-lisp/dlisp/jtw-javac.el --funcall doit |& \
grep STRINGBGFG("#$(TELEPHONE) input[0-9]:") - |& sed -e STRINGBGFG("s/\#$(TELEPHONE) input[0-9]://g") -

%.run: %.class

@echo STRINGBGFG("* Stage 3 : Running $*.class file")

java $(JAVA FLAGS) $* |& emacs --batch \
--load $(PREFIX)/share/emacs/site-lisp/dlisp/jtw-java.el --funcall doit \
|& grep STRINGBGFG("#$(TELEPHONE) input[0-9]*:") - |& sed -e STRINGBGFG("s/\#$(TELEPHONE)
input[0-9]*://g") -

clean: build-class-db

rm -fv $$(find . -name STRINGBGFG("*.java"))

rm -fv $$(find . -name STRINGBGFG("*.class"))

build: clean

The first line .PRECIOUS without any arguments clears the list of precious files, the list of files
not to delete during the build process.

92 CHAPTER 2. THE J.T.W. LANGUAGE

2.12 Elisp code for editing *.jtw files

This following Elisp file $(PREFIX)/share/emacs/site-lisp/dlisp/jtw-mode.el gives you syn-
tax highlighting of J.T.W. constructs and correct indentation of J.T.W. code.

;; BEGIN FILE: ˜/dlisp/d-make-face.el

;; (d-make-face ’red-face (setq bgcolor bg-colour) "red" :bold)

(defmacro d-make-face (font bgcolor fgcolor &rest rest)

;;(d-debug "Queen / Another one bites the dust")

(d-assert (symbolp ’font))

(d-assert (if (boundp ’font)

(symbolp ’font)

t))

;;(d-debug "Calamansi")

(let (p was-error

bold unbold

italic unitalic

underline ununderline)

;;(d-debug "The Shape of Jazz to Come / Chronology")

;;(d-debug "Queen / Fat Bottomed Girls")

(setq bgcolor (eval bgcolor))

(setq fgcolor (eval fgcolor))

;;(message "bgcolor=%s fgcolor=%s" bgcolor fgcolor)

;;(progn (setq bgcolor "#ffffff") (setq fgcolor "#000") (setq font ’fg:white))

(setq p ‘(progn
(if (not (eq ’font ’default))

(kill-local-variable (quote , font)))

(setq , font (quote , font))

(make-face (quote , font))

(set-face-background (quote , font) , bgcolor)

(set-face-foreground (quote , font) , fgcolor)))

(setq ptr rest)

;;(d-debug "The Shape of Jazz to Come / Congeniality")

(while ptr
(cond

((or (null (car ptr))
(stringp (car ptr)))

)

;; --

((or (eq (car ptr) :bold) (eq (car ptr) :unbold))

(if (eq (car ptr) :bold)

(setq bold t))

(if (eq (car ptr) :unbold)

(setq unbold t))

(when (and bold unbold)

(setq was-error (concat

was-error

"Both symbols should not be defined: :bold and :unbold,")))

(if bold

(setq p ‘(progn
, p

(make-face-bold (quote , font)))))

(if unbold

(setq p ‘(progn
, p

(make-face-unbold (quote , font))))

))

;; --

((or (eq (car ptr) :italic) (eq (car ptr) :unitalic))

(if (eq (car ptr) :italic)

(setq italic t))

(if (eq (car ptr) :unitalic)

(setq unitalic t))

(when (and italic unitalic)

(setq was-error (concat

2.12. ELISP CODE FOR EDITING *.JTW FILES 93

was-error

"Both symbols should not be defined: :italic and :unitalic,")))

(if italic

(setq p ‘(progn
, p

(make-face-italic (quote , font)))))

(if unitalic

(setq p ‘(progn
, p

(make-face-unitalic (quote , font))))

))

;; --

((or (eq (car ptr) :underline) (eq (car ptr) :ununderline))

(when (eq (car ptr) :underline)

(setq u-or-uu t)

(setq underline t))

(when (eq (car ptr) :ununderline)

(setq u-or-uu nil)

(setq ununderline t))

(when (and underline ununderline)

(setq was-error (concat

was-error

"Both symbols should not be defined: :underline and :ununderline,")))

(setq p ‘(progn
, p

(set-face-underline (quote , font) u-or-uu))))

;; --

(t ;; (setq was-error "Schmu")

;;(d-debug "Calamansi")

(if (not (car ptr))
(debug))

(setq was-error (format "%s, FOO! unrecognised symbol: %s"

was-error

(car ptr)))

(error (format "%s Unrecognised keyword %s" was-error (car ptr))))

)

(setq ptr (cdr ptr))) ;; end WHILE! ptr

;; --

(if was-error

(d-error (concat was-error " in macro d-make-face."))

)

p)

)

;; (d-amiga-color (setq rgb-components "#fff"))

(defun d-amiga-color (rgb-components)

"Allows for entry into the Amiga colour-space with 12 bits of

colour for a total of 4096 different colours."

(cond

((= (length rgb-components) 7)

rgb-components)

((= (length rgb-components) 4)

(let (r g b)

(setq r (substring rgb-components 1 2))

(setq g (substring rgb-components 2 3))

(setq b (substring rgb-components 3 4))

(setq rgb-components (concat "#" r r g g b b))

))))

(progn
(setq bg-colour "#f0f0f0")

(setq prefs-bg-black-p nil)

(setq bg-colour-inverted "#000")

)

94 CHAPTER 2. THE J.T.W. LANGUAGE

(defun d-font-lock-add-begin (keywords)

(if (fboundp ’font-lock-add-keywords)

(font-lock-add-keywords nil keywords nil)

(setq font-lock-keywords

(append

keywords

font-lock-keywords))))

(defun d-font-lock-add-end (keywords)

(if (fboundp ’font-lock-add-keywords)

(font-lock-add-keywords nil keywords ’end)

(setq font-lock-keywords

(append

font-lock-keywords

keywords))))

(provide ’d-make-face)

(quote

abc)

(d-quote
abc

def)

;; END FILE: ˜/dlisp/d-make-face.el

;; BEGIN FILE: ˜/dlisp/jtw-mode.el

;;; jtw-mode.el — A new major mode for editing *.jtw files

;; Copyright (C) 2016 Davin Pearson

;; Maintainer: Davin Max Pearson <http://davin.50webs.com>
;; Keywords: Java Training Wheels major mode

;; Version: 2.0

;;; Commentary:

;; This program is part of GNU Java Training Wheels.

;;; m4 limitation of warranty

;;; Code:

(require ’cl)

;;(setq d-emergency-set-load-path--dir (format "%s/dlisp/" (getenv "PWD")))

;;(when (not (fboundp ’d-emergency-set-load-path))

;; (defun d-emergency-set-load-path ()

;; (setq load-path (cons d-emergency-set-load-path--dir load-path))

;; (message "jtw-mode.el (car load-path)=%s" (car load-path))

;;))

;; (d-emergency-set-load-path)

(require ’early-bindings)

(defvar jtw-mode-syntax-table)

(defvar jtw-mode-map (make-keymap))

(setq auto-mode-alist (cons ’ "\\.jtw$" . jtw-mode) auto-mode-alist))

(add-hook ’font-lock-mode-hook ’d-jtw-font-lock-mode-hook–post ’APPEND)

(defun cull-from-list (cull-me list)

(let (ptr)

2.12. ELISP CODE FOR EDITING *.JTW FILES 95

(setq ptr list)

(while ptr
(when (equal cull-me (car ptr))

(setq list (cdr ptr))
(setq ptr nil)

)

(setq ptr (cdr ptr)))
list))

(defun d-jtw-font-lock-mode-hook–post ()

(if (eq major-mode ’jtw-mode)
(d-font-lock-add-end
’(

"^[\t]*\\(//.*$\\)" 1 ’font-lock-comment-face t)))))

(defvar *elaborate-jtw* t

"Whether or not to turn on buggy java-mode syntax highlighting")

(defun jtw-mode ()

(interactive)

;;(html-mode)

;;(if *elaborate-jtw*

(java-mode)

(setq major-mode ’jtw-mode)

(setq mode-name "JTW")

(set (make-local-variable ’jtw-mode-syntax-table)
(copy-syntax-table java-mode-syntax-table))

(set-syntax-table jtw-mode-syntax-table)
(progn

(modify-syntax-entry ? "w")

(modify-syntax-entry ?< "(>")

(modify-syntax-entry ?> ")<")

)

(use-local-map jtw-mode-map)

(local-set-key "\t" ’jtw–indent-line)

(progn

(local-set-key "\C-m" ’d-indent-new-comment-line)

(local-set-key "\C-r" ’d-indent-new-comment-line)

)

(local-set-key [(meta control \\)] ’jtw–meta-control-backslash)

(local-set-key "\C-c\C-c" ’d-cc–comment-region)

(abbrev-mode 1)

(setq local-abbrev-table java-mode-abbrev-table)

(make-local-variable ’font-lock-keywords)

(make-local-variable ’c-basic-offset)

(setq c-basic-offset 3)

(font-lock-mode 1)

(font-lock-fontify-buffer)

;;(setq font-lock-keywords nil)

;;; NOTE: the following code adds syntax highlighting of /** ... */ javadoc comments

(when *elaborate-jtw*
(setq font-lock-keywords (cull-from-list

’ "\\<\\(@[a-zA-Z0-9]+\\)\\>" (1 c-annotation-face))

font-lock-keywords))

(set (kill-local-variable ’global-font-lock-keywords) font-lock-keywords)

(with-temp-buffer
(emacs-lisp-mode)

(kill-local-variable ’global-font-lock-keywords)

(insert-prin1 ’(setq global-font-lock-keywords

(append global-font-lock-keywords

’(c-font-lock-complex-decl-prepare

(#[(limit)

sexy-string

96 CHAPTER 2. THE J.T.W. LANGUAGE

[limit javadoc-font-lock-doc-comments c-font-lock-doc-comments "/**"]

4])))))

(goto-char (point-min))

(d-assert (re-search-forward "\\<sexy-string\\>" nil t))

(replace-match (format "\"\302\303%c%c#\207\"" 8 ?\t) ’FIXEDCASE ’LITERAL)

(eval-buffer)

(setq font-lock-keywords global-font-lock-keywords)

))

;; NOTE: the following code adds fontication of J.T.W. keywords

(when *elaborate-jtw*
(d-font-lock-add-begin
‘(

"\\(class\\) \\([A-Z][a-zA-Z0-9]*\\)"
(1 ’font-lock-keyword-face nil)

(2 ’font-lock-type-face t))

(,(concat "\\<\\([A-Z]+[a-z][A-Za-z0-9]*\\|[A-Z]\\|void\\|boolean\\|"

"char\\|int\\|long\\|short\\|float\\|double\\)"

"[][]*[\t]+\\([a-z][A-Za-z0-9]*\\)(")

(1 ’font-lock-type-face nil)

(2 ’font-lock-function-name-face nil))

(,(concat "\\<\\([A-Z]+[a-z][A-Za-z0-9]*\\|[A-Z]\\|void\\|boolean\\|"

"char\\|int\\|long\\|short\\|float\\|double\\)"

"[][]*[\t]+\\([a-z][A-Za-z0-9]*\\) *[;=,)]")

(1 ’font-lock-type-face nil)

(2 ’font-lock-variable-name-face nil))

(,(concat "\\<\\(d-assert\\|function\\|var\\|classVar\\|"

"property\\|method\\|constructor\\|"

"until\\|then\\|and\\|or\\|include\\)\\>")

(1 font-lock-keyword-face nil))

"^\\(package\\)[\t]+\\([a-z.]+\\);"
(1 ’bold nil)

(2 ’fg:lightred t))

"^\\(import\\)[\t]+\\([a-z.]+\\)\\.*;"
(1 ’bold nil)

(2 ’fg:lightred t))

"\\<\\(begin\\)\\>" 0 font-lock-keyword-face nil)

"\\<\\(end\\)\\>" 0 font-lock-keyword-face nil)

"\\<\\(beginMain\\)\\>" 0 font-lock-keyword-face nil)

"\\<\\(endMain\\)\\>" 0 font-lock-keyword-face nil)

"\\<\\(System.out.print\\(ln\\)?\\)(" 1 d-face-cc-global nil)

"\\<\\(System.exit\\)(" 1 d-face-cc-global nil)

"\\<\\([a-z][A-Za-z0-9]*\\.printStackTrace\\)(" 1 d-face-cc-global nil)

"\\<\\(null\\|true\\|false\\)\\>" 1 font-lock-constant-face nil)

(,(concat "\\<\\(abstract\\|break\\|byte\\|case\\|catch\\|"

"const\\|continue\\|default\\|do\\|else\\|elseif\\|"

"extends\\|final\\|finally\\|for\\|goto\\|if\\|"

"implements\\|instanceof\\|interface\\|"

2.12. ELISP CODE FOR EDITING *.JTW FILES 97

"native\\|new\\|package\\|private\\|protected\\|"

"public\\|return\\|static\\|super\\|switch\\|"

"synchronized\\|this\\|throw\\|throws\\|transient\\|"

"superfor\\|downto\\|to\\|step\\|"

"try\\|volatile\\|while\\)\\>")

1 font-lock-keyword-face nil)

"\\(\\<\\|-\\)\\([0-9]+[.]\\)?[0-9]+\\([eE]-?[0-9]+\\)?"
0 d-face-cc-digits nil)

"\\<b\\>" 0 ’bold nil)

"\\<function [^ \t]* \\([a-z][A-Za-z0-9]*\\)("
1 font-lock-function-name-face nil)

"\\<method [^ \t]* \\([a-z][A-Za-z0-9]*\\)("
1 font-lock-function-name-face nil)

"\\<\\(method\\|function\\) \\([a-z][a-zA-Z0-9]*\\)("
2 font-lock-function-name-face nil)

"\\<[A-Z]+[a-z][A-Za-z0-9 <,>]*" 0 ’font-lock-type-face nil)

"\\<[A-Z]\\>" 0 ’font-lock-type-face nil)

(,(concat "\\<\\(void\\|boolean\\|char\\|int\\|long\\|short\\|"

"float\\|double\\)\\>") 0 ’font-lock-type-face nil t)

"\\< m4 [a-zA-Z0-9]*" 0 d-face-m4 t)

(,(concat "\\(\\< m4 " "dnl\\>\\)\\([^\r\n]*\\)$")

(1 d-face-m4-dnl t)

(2 font-lock-comment-face t))

"\\<\\(\\([a-z]+\\.\\)*\\)[A-Z][a-zA-Z0-9]*" 1 ’fg:lightred nil)

"\\<\\(getter\\|setter\\)\\>" 1 ’d-face-defmacro t)

"\\<\\([a-zA-Z0-9]*[\\\\]? design[\\\\]? pattern\\)\\>" 1 ’d-face-defmacro t)

"\\<\\(foreach\\)\\>" 1 ’d-face-defmacro t)

)))

;;(font-lock-fontify-buffer)

)

(defun jtw–clamp-point (newpoint)

(max (point-min) (min (point-max) newpoint)))

(defun jtw–inside-comment-or-string ()

(save-match-data
(let ((p (get-char-property (jtw–clamp-point (1- (point))) ’face)))

(or (eq p ’font-lock-string-face)

(eq p ’font-lock-comment-face)

(eq p ’font-lock-doc-face)

(eq p ’font-lock-doc-string-face)

(eq p ’d-face-super-comment)
)))

)

(defun jtw–count-string (string)

(save-excursion
(save-match-data

(let ((max (point-at-eol))

(count 0))

(beginning-of-line)

98 CHAPTER 2. THE J.T.W. LANGUAGE

(while (re-search-forward string max t)

(if (not (jtw–inside-comment-or-string))
(incf count)))

count))))

(defun jtw–count ()

(let (r)

(save-excursion
(beginning-of-line)

(setq r (- (+ (jtw–count-string "\\<begin\\>")

(jtw–count-string "\\<beginMain\\>")

(* 2 (jtw–count-string "("))

(* 2 (jtw–count-string "{")))

(+ (jtw–count-string "\\<end\\>")

(jtw–count-string "\\<endMain\\>")

(* 2 (jtw–count-string ")"))

(* 2 (jtw–count-string "}")))))

;;(message "r=%s" r)

r)))

(defun jtw–get-indent ()

(save-excursion
(beginning-of-line)

(while (looking-at " ")

(forward-char))

(- (point) (point-at-bol))))

(defun jtw–set-indent (should-be)

(if (>= should-be 0)

(save-excursion
(beginning-of-line)

(d-assert (looking-at "^[\t]*"))

(setq i (- (match-end 0) (match-beginning 0)))

(when (/= i should-be)

;;(d-foo)

(delete-region (point-at-bol)

(save-excursion
(beginning-of-line)

(skip-chars-forward " ") (point)))

(beginning-of-line)

(insert (make-string should-be ?))))))

(defvar jtw–basic-offset 3)

(defun jtw–line-1 ()

(interactive)

;;(d-foo)

(save-excursion
(beginning-of-line)

;;(d-foo)

(cond

((= (point) (point-min))

;;(d-foo)

(jtw–set-indent 0))

((looking-at "^[a-z]*\\(class\\|interface\\)\\>")

(when (not (flm-inside-comment-or-string))
(jtw–set-indent 0)))

(t

(forward-line -1)

(setq rel (jtw–count))
(setq i (jtw–get-indent))

2.12. ELISP CODE FOR EDITING *.JTW FILES 99

(forward-line 1)

;;(if (/= rel 0) (beep))

;;(set-buffer-modified-p t))

(jtw–set-indent (+ i (* rel jtw–basic-offset)))))))

(defun jtw–line-2 ()

;;(d-foo)

(save-excursion

(when (looking-at "^[\t]*end")

(setq i (jtw–get-indent))
(jtw–set-indent (- i jtw–basic-offset)))))

;;(eval ’(setq f 123))

;;(setq func ’jtw--line-1)

;;(eval (cons ’jtw--line-1 nil))

(defun jtw–a (func)

(save-excursion
(let (m)

(setq m (make-marker))

(forward-line)

(set-marker m (point))

(if (not (re-search-backward "^\\([a-z].*\\)?\\(class\\|interface\\)" nil t))

(goto-char (point-min)))

;;(d-foo)

;;(goto-char (point-min))

(while (< (point) (marker-position m))

(eval (cons func nil))

(forward-line 1))

(set-marker m nil))))

(defun jtw–meta-control-backslash ()

(interactive)

(let (m)

(setq m (make-marker))

(set-marker m (point))

(if (and (fboundp ’d-movement–unpad-buffer) (d-movement–is-correct-mode))
(d-movement–unpad-buffer))

(goto-char (point-min))

(while (< (point) (point-max))

(jtw–line-1)
(forward-line 1))

(goto-char (point-min))

(while (< (point) (point-max))

(jtw–line-2)
(forward-line 1))

(if (and (fboundp ’d-movement–pad-buffer) (d-movement–is-correct-mode))
(d-movement–pad-buffer))

(goto-char m)

(set-marker m nil)

(message "Ran jtw--meta-control-backslash")

))

(defun jtw–all ()

;;(d-beeps "line1")

(jtw–a ’jtw–line-1)
;;(d-beeps "line2")

(jtw–a ’jtw–line-2)
;;(d-beeps "line3")

)

(defun jtw–get-indents ()

(save-excursion
(let (list)

(goto-char (point-max))

(beginning-of-line)

100 CHAPTER 2. THE J.T.W. LANGUAGE

(setq list nil)

(while (not (bobp))

(forward-line -1)

(beginning-of-line)

(setq i (jtw–get-indent))
(setq list (cons i list)))

list)))

(defun jtw–newline ()

(interactive)

(let (c)

(when (save-excursion (beginning-of-line) (looking-at "^.*//"))

(setq c t))

;;(d-foo)

(insert "\n")

(jtw–indent-line)

(if c (insert "// "))))

(defun jtw–delete-line ()

(delete-region (point-at-bol) (point-at-eol))

(if (looking-at "\n")

(delete-char 1))

)

(defun jtw–get-current-indentation ()

(save-excursion
(beginning-of-line)

(d-assert (looking-at "^\\([\t]*\\)[^ \t\r\n]"))

(/ (length (buffer-substring-no-properties (match-beginning 1) (match-end 1)))

c-basic-offset)))

(defun jtw–current-line-as-string ()

(buffer-substring-no-properties (point-at-bol)

(point-at-eol)))

(defun jtw–get-prev-and-this-line ()

(beginning-of-line)

(let (line)

(list (if (save-excursion
(beginning-of-line)

(bobp))

""

(save-excursion
(forward-line -1)

(beginning-of-line)

(while (and (not (bobp)) (looking-at "^[\t]*$"))

(forward-line -1)

(beginning-of-line))

(setq line (d-what-line))
;;(message "*** jtw--current-line-as-string=%s" (jtw--current-line-as-string))

(jtw–current-line-as-string)))
(jtw–current-line-as-string)
line)))

(defun jtw–indent-line ()

(interactive)

(font-lock-fontify-buffer)

(let (pair prev-line this-line i triple)

(save-match-data
(save-excursion

(beginning-of-line)

(setq i (if (save-excursion
(beginning-of-line)

(bobp))

2.12. ELISP CODE FOR EDITING *.JTW FILES 101

0

(save-excursion
(forward-line -1)

(beginning-of-line)

(while (and (not (bobp)) (looking-at "^[\t]*$"))

(forward-line -1)

(beginning-of-line))

(jtw–get-current-indentation)
;;(debug "bar")

)))

(setq triple (jtw–get-prev-and-this-line))
;;(debug "John Coltrane")

(setq prev-line (nth 0 triple))

(setq this-line (nth 1 triple))

(setq previous-nontrivial-line (nth 2 triple))

(if (and (string-match "begin" prev-line)

(save-excursion
(goto-line previous-nontrivial-line)

(or (looking-at "^[\t]*begin")

(re-search-forward "begin" (point-at-eol) t)))

(not (memq (cadr (text-properties-at (save-excursion
(goto-line previous-nontrivial-line)

(beginning-of-line)

(re-search-forward "begin" (point-at-eol) t))))

’(font-lock-string-face

font-lock-comment-face

font-lock-doc-face

font-lock-doc-string-face

d-face-super-comment))))
(incf i))

(if (and (string-match "end" this-line)

(save-excursion
(beginning-of-line)

(or (looking-at "^[\t]*end")

(re-search-forward "end" (point-at-eol) t)))

(not (memq (cadr (text-properties-at (save-excursion
(beginning-of-line)

(re-search-forward "end" (point-at-eol) t))))

’(font-lock-string-face

font-lock-comment-face

font-lock-doc-string-face

font-lock-doc-face

d-face-super-comment))))
(decf i))

(setq i (max 0 i))

;;(message "indenting line %d to %d" (d-what-line) i)

;;(sit-for 1)

(beginning-of-line)

;;(indent-line-to i)

(indent-line-to (* c-basic-offset i))

;;(debug "Halloway")

)

(beginning-of-line)

(skip-chars-forward " \t")

;;(debug "antelope")

)))

(require ’d-make-face)

;; I am a normal comment

;;; I am a super comment

(defvar jtw-mode-patch-colors t

"Set me to nil to prevent overwriting of default colorisation."

102 CHAPTER 2. THE J.T.W. LANGUAGE

)

;; ordinary comment

;;; super comment

(setq bg-colour "#f0f0f0")

(require ’d-make-face)

(provide ’jtw-mode)

;; END FILE: ˜/dlisp/jtw-mode.el

2.13 Translator *.jtw to *.class Elisp source code

2.13.1 jtw-build-java.el Elisp source code

The file jtw-build-java.el saves to disk a *.java file corresponding to the *.jtw file given as
an argument. It gives error diagnostics on problematic J.T.W. constructs. This file respects file
line numbers in the case that include statements are present in your code. The large size of the
file (2,900+ lines of code) makes it unsuitable for inclusion in this book, so instead for the Elisp
source code, see the file jtw-build-java.el by visiting the following Website:

davin.50webs.com/J.T.W/tutorial-01-HelloWorld.html

and clicking on the tarball in Question 1.1. If you use the default setting of the installer module, the
file jtw-build-java.el will be located at /usr/share/emacs/site-lisp/dlisp/ for GNU/Linux
and c:/java-training-wheels/share/emacs/site-lisp/dlisp/ for M.S. Windows.

2.13.2 jtw-javac.el Elisp source code

The file jtw-javac.el is used to convert *.java files to *.class, again respecting line numbers in
the case that include statements are present in your source code. The location of jtw-javac.el
will be the same as the location of jtw-build-java.el. The output of the javac command has
its standard output and standard error piped into Emacs’ batch mode running the file jtw-javac

and invoking the method: doit. Here is the file jtw-javac.el. This file is included in the tarball
mentioned in the last subsection §2.13.1.

;; BEGIN FILE: ˜/dlisp/jtw-javac.el

;;; jtw-javac.el — A program for receiving the output of the program: javac

;; Copyright (C) 2006-2016 Davin Pearson

;; Author/Maintainer: Davin Max Pearson <http://davin.50webs.com>
;; Keywords: javac backend

;; Version: 2.0

;; This program is part of GNU Java Training Wheels.

;;; m4 limitation of warranty

;;; Commentary:

;; A program for receiving the output of the program: javac in the form

;; of a pipe.

;;; Known Bugs:

;; None so far!

http://davin.50webs.com/J.T.W/tutorial-01-HelloWorld.html

2.13. TRANSLATOR *.JTW TO *.CLASS ELISP SOURCE CODE 103

;;; Code:

(require ’cl)

(setq *prefix*

(let ((pwd (getenv "PWD"))) ;; (setq pwd (getenv "PWD"))

(if (not noninteractive)

(if (not (string-match "dlisp" pwd))

(concat pwd "/preprocessors/jtw-projects/")

pwd)

pwd)))

(defun checkpoint (msg &rest rest)

(apply ’message msg rest)

;; do nothing

)

(if (not (boundp ’file-comes-from))

(setq file-comes-from nil))

(if (not file-comes-from)

(setq file-comes-from (cons "jtw-javac.el" file-comes-from)))

(setq load-path (cons (expand-file-name (concat *prefix* "/../dlisp"))

load-path))

(require ’early-bindings)

(require ’jtw-build-java)

(message "*** Welcome to file: jtw-javac.el %s %s"

(print-symbol *prefix*)
(print-symbol *stump*)
)

(d-assert (find "jtw-javac.el" file-comes-from :test ’string=))

;;(d-assert (string= file-comes-from "jtw-javac.el"))

;;(message "*** Symbol value... %s" (print-symbol *stump*))

(defun doit ()

(interactive)

;;(read-line-pre)

;;(message "input8: jtw-javac: *stump*=%s" *stump*)

(message "*** Called defun: doit file: jtw-javac.el %s"

(print-symbol *stump*))
(let (numb said-message red-line numb file-less-suffix old-suffix new-suffix

line-left line-right file-plus-suffix location

(case-fold-search t) p)

(condition-case err

;;(while (setq red-line (d-read-line))

(while (setq red-line (read-from-minibuffer ""))

(setq said-message nil)

;;(message "input0: red-line=%s" red-line)

;;(if (not (string-match "^Loading " red-line))

(cond

((or (string-match (regexp-quote "Loading 00debian-vars...") red-line)

(string-match (regexp-quote "Loading /etc/emacs/site-start.d/50autoconf.el") red-line)

(string-match (regexp-quote "Loading /etc/emacs/site-start.d/50dictionaries-common.el") red-line)

(string-match (regexp-quote "Loading debian-ispell...") red-line)

(string-match (regexp-quote "Loading /var/cache/dictionaries-common/emacsen-ispell-default.el...") red-line)

(string-match (regexp-quote "Loading /var/cache/dictionaries-common/emacsen-ispell-dicts.el...") red-line)

(string-match (regexp-quote "Loading /etc/emacs/site-start.d/50git-core.el") red-line)

104 CHAPTER 2. THE J.T.W. LANGUAGE

)

;; do nothing

)

((string-match (concat "\\(\\([a-zA-Z]:/\\|"

"~/\\|/\\|\\./\\|\\)"

"[a-zA-Z0-9 /]+\\)"

"\\(\\.java\\):\\([0-9]+\\)")

red-line)

(progn
(setq file (substring red-line (match-beginning 0) (match-end 3)))

;;(message "input6: filename=%s" file)

(save-match-data
(if (string-match "^/" file)

(setq file (substring file 1))))

;;(message "input7: filename=%s" file)

;;(setq said-message t)

(setq numb (1- (d-read-str (substring red-line

(match-beginning 4)

(match-end 4)))))

(setq file-less-suffix (substring red-line

(match-beginning 1)

(match-end 1)))

;;(message "input3: red-line=%s" red-line)

;;(message "input3: file-less-suffix=%s" file-less-suffix)

(setq old-suffix ".java")

(setq new-suffix ".jtw")

(setq line-left (substring red-line 0 (match-end 1)))

(setq line-right (substring red-line (match-end 4)))

(setq file-plus-suffix (concat file-less-suffix new-suffix))

(setq file (concat file-less-suffix old-suffix))

(if (string-match "./" file)

(setq file (substring file (match-end 0))))

;;(setq default-directory (file-name-directory default-directory))

;;(setq file (concat default-directory file))

;;(error "Maria Callas")

;;(message "input8: (file-name-directory file)=%s" (file-name-directory file))

;;(message "input7: file=%s" file)

;;(message "input7: default-directory pre=%s" default-directory)

(d-assert (stringp file))

;;(message "input7: file=%s" file)

;;(message "input9: (file-name-directory file)=%s" (file-name-directory file))

(when (file-name-directory file)

(d-assert (stringp (file-name-directory file)))

(d-assert (stringp default-directory))

(if (string-match (file-name-directory file) default-directory)

(setq default-directory (substring default-directory 0 (match-beginning 0))))

;;(message "input7: default-directory post=%s" default-directory)

;;(message "input7: (file-name-nondirectory)=%s" (file-name-nondirectory file))

)

(d-assert (stringp file))

(d-assert (stringp default-directory))

;;(message "input8: (concat default-directory file)=%s" (concat default-directory file))

;;(message "input8: numb=%s" numb)

(find-file (concat default-directory file))

;;(message "input2: finding file=%s" file)

;;(debug "Desolation Row")

(goto-line numb)

;;(debug "Tiger Woods")

;;(message "input2: Amber Dempsey")

;;(message "input2: (buffer-file-name)=%s" (buffer-file-name))

(setq location (warn–get-location))
;;(message "input2: (cdr location)=%d" (cdr location))

;;(message "input2: setq location")

(setq red-line (concat line-left new-suffix ":" (prin1-to-string (cdr location)) line-right))

2.13. TRANSLATOR *.JTW TO *.CLASS ELISP SOURCE CODE 105

;;(message "input2: setq red-line")

;;(debug "J.S. Bach / Mass in B Minor")

(message "%s input1: %s" *java-namespace* red-line)))

(t

(message "%s input2: %s" *java-namespace* red-line))))

(error

(setq p (prin1-to-string (cdr err)))

(if (and (not (string-match "Error reading from stdin" p))

(not (string-match "End of file" p))

(not (string-match "Eobp" p)))

(message "%s input4: Error=%s" *java-namespace* (cdr err)))

)))

(message "*** end defun: doit file: jtw-javac.el %s" (print-symbol *stump*))

)

(message "*** Scanner reached end file: jtw-javac.el")

;; (round (/ (d-what-line) 58.0)) 2 pages

(provide ’jtw-javac)

;; END FILE: ˜/dlisp/jtw-javac.el

2.13.3 jtw-java.el Elisp source code

The file jtw-java.el reads the output of java’s standard output and standard error piped into
this file and generates correct line numbers of java error messages, even if file inclusion is used.
The location of jtw-java.el will be the same as the location of jtw-build-java.el. Here is the
file jtw-java.el. This file in included in the tarball mentioned two subsections ago, in §2.13.1.

;; BEGIN FILE: ˜/dlisp/jtw-java.el

;;; jtw-java.el — A program for receiving the output of the program: java

;; Copyright (C) 2006-2016 Davin Pearson

;; Author/Maintainer: Davin Max Pearson <http://davin.50webs.com>
;; Keywords: java backend

;; Version: 2.0

;; This file is part of GNU Java Training Wheels.

;;; m4 limitation of warranty

;;; Commentary:

;; A program for receiving the output of the program: java in the form

;; of a pipe.

;;; Known Bugs:

;; None so far!

;;; Code:

(message "Welcome to jtw-java.el")

(require ’cl)

(when (or (not (boundp ’*prefix*)) (not *prefix*))

(message "Foomatic: *prefix* is not bound"))

(when (or (not (boundp ’*prefix*)) (not *prefix*))
(setq *prefix* ;; (setq env (getenv "PWD"))

(let ((env (getenv "PWD"))) ;; (setq env (getenv "PWD"))

106 CHAPTER 2. THE J.T.W. LANGUAGE

(if (not noninteractive)

(if (not (string-match "dlisp" env))

(expand-file-name

(concat env "/preprocessors/jtw-projects/"))

env)

env))))

(when (or (not (boundp ’*prefix*)) (not *prefix*))

(message "Foomatic: *prefix* is not bound"))

;;(assert *prefix*)

(message "Welcome to jtw-java.el SNIFFLER")

;;(d-assert nil)

(if (not (boundp ’file-comes-from))

(setq file-comes-from nil))

(setq file-comes-from (cons "jtw-java.el" file-comes-from))

(setq load-path (cons (expand-file-name (concat *prefix* "/../dlisp/"))

load-path))

;;; NOTE begin: (require ’early-bindings)
;;;
(require ’early-bindings)

;;;

;;; NOTE end: (require ’early-bindings)

(message "Ride on the Peace Train")

(d-assert (boundp ’*prefix*))

(message "load-path=%s" (prin1-to-string load-path))

(message (print-symbol *prefix*))

(require ’jtw-build-java)

(d-assert (find "jtw-java.el" file-comes-from :test ’string=))

(defun checkpoint (msg &rest rest)

;;(apply ’message msg rest)

;; do nothing

)

(defun doit ()

(interactive)

(message "Welcome to defun: doit file: jtw-java.el DOUGHNUTS")

(let (red-line said-message numb file-less-suffix old-suffix

new-suffix line-left line-right file-plus-suffix

cdr-err)

(condition-case err

(while (setq red-line (read-from-minibuffer ""))

;;(while (setq red-line (d-read-line))

;;(message "input0: red-line=%s" red-line)

;;(message "1")

(d-assert red-line)

;;(message "2")

(d-assert (stringp red-line))

;;(message "3")

(d-assert (sequencep red-line))

;;(message "4")

(setq said-message nil)

;;(message "5")

2.13. TRANSLATOR *.JTW TO *.CLASS ELISP SOURCE CODE 107

(cond

((or

(string-match (regexp-quote "Loading 00debian-vars...") red-line)

(string-match (regexp-quote "Loading /etc/emacs/site-start.d/50aut(string (regexp-quote oconf.el") red-line)

(string-match (regexp-quote "Loading /etc/emacs/site-start.d/50dictionaries-common.el") red-line)

(string-match (regexp-quote "Loading debian-ispell...") red-line)

(string-match (regexp-quote "Loading /var/cache/dictionaries-common/emacsen-ispell-default.el") red-line)

(string-match (regexp-quote "Loading /var/cache/dictionaries-common/emacsen-ispell-dicts.el") red-line)

(string-match (regexp-quote "Loading /etc/emacs/site-start.d/50git-core.el") red-line)

)

;; do nothing

)

((string-match "\\([A-Z][a-zA-Z0-9]*\\)\\(\\.java\\):\\([0-9]+\\)" red-line)

;;(message "6")

(setq said-message t)

;;(message "7")

(setq numb (substring red-line (match-beginning 3) (match-end 3)))

;;(message "8")

(d-assert (d-read-ready numb))

;;(message "9")

;;(d-assert (sequencep (count-locations)))

;;(setq numb (- (d-read-str numb) (count-locations)))

;;(message "10")

(d-assert (sequencep numb))

;;(message "11")

(d-assert (stringp numb))

(setq numb (d-read-str numb))

;;(message "12")

(d-assert (integerp numb))

;;(d-assert (sequencep numb))

;;(message "13")

(d-assert (stringp red-line))

(d-assert (sequencep red-line))

(d-assert (and 1 (match-beginning 1)))

(d-assert (and 2 (match-end 1)))

(d-assert (and 3 (match-beginning 2)))

(d-assert (and 4 (match-end 2)))

(d-assert (and 5 (match-beginning 3)))

(d-assert (and 6 (match-end 3)))

;;(message "14")

(setq file-less-suffix (substring red-line (match-beginning 1) (match-end 1)))

;;(message "15")

(d-assert file-less-suffix)

(d-assert (stringp file-less-suffix))

;;(message "16")

(setq old-suffix ".java")

;;(message "17")

(d-assert old-suffix)

(d-assert (stringp old-suffix))

;;(message "18")

(setq new-suffix ".jtw")

;;(message "19")

(d-assert new-suffix)

(d-assert (stringp new-suffix))

;;(message "20")

(setq line-left (substring red-line 0 (match-beginning 1)))

(setq line-right (substring red-line (match-end 3)))

(setq file-plus-suffix (concat file-less-suffix new-suffix))

(setq file (concat file-less-suffix old-suffix))

;;(message "21")

(d-assert (stringp line-left))

(d-assert (stringp line-right))

(d-assert (stringp file-plus-suffix))

108 CHAPTER 2. THE J.T.W. LANGUAGE

(d-assert (stringp file))

;;(message "22")

(find-file file)

;;(message "23")

(d-assert (integerp numb))

(goto-line numb)

;;(message "(warn--get-location)=%s" (warn--get-location))

;;(message "24")

;;(debug "Tiger Woods")

(setq location (warn–get-location))
;;(setq location (cons file numb))

;;(message "24b")

;;(message "location=%s" location)

(d-assert (not (eq location t)))

(d-assert (not (eq location nil)))

(d-assert (sequencep location))

(d-assert (consp location))

(d-assert (stringp (car location)))

(d-assert (numberp (cdr location)))

;;(message "25")

(when location

;;(message "26")

(setq red-line (concat line-left (car location) ":" (prin1-to-string (cdr location)) line-right))

;;(message "27")

)

;;(message "28")

(d-assert (sequencep red-line))

)

) ;; end COND!

(when said-message

(message "%s input1: %s" *java-namespace* red-line))

(when (not said-message)

(message "%s input2: %s" *java-namespace* red-line))

;;(message "Jean Jarre’s Equinoxe")

)

(error

(setq cdr-err (prin1-to-string (cdr err)))

(if (or (string-match "Error reading from stdin" cdr-err)

(string-match "Eobp" cdr-err)

(string-match "Could not find or load main class" cdr-err))

(message "Known error err=%s" cdr-err)

(message "%s input3: Unknown error (%s)" *java-namespace* cdr-err)

) ;; end IF!

) ;; end ERROR!

) ;; end CONDITION-CASE! err

) ;; end LET! red-line said-message numb file-less-suffix old-suffix

(message "Reached end of defun: doit file: jtw-java.el DOUGHNUTS")

)

;; My Fair Lady / Rex Harrison & Julie Andrews

(message "Scanner at end of file: jtw-java.el")

;; (round (/ (d-what-line) 50.0)) 3 pages

(provide ’jtw-java)

;; END FILE: ˜/dlisp/jtw-java.el

2.14. AN IDIOM FOR CONSTRUCTORS IN JAVA AND C++ 109

2.14 An idiom for constructors in Java and C++

When a constructor’s purpose is to set one or many property variables, it seems natural to
name the parameters with the same names as the propertys. The problem with this approach is
that you need to distinguish between the names of the propertys with the names of the param-
eters. Luckily there is a way to do this. The this keyword is not learned by novice programmers
because it is implicit in every mention of a property in the same class and every call to a method
of the same class. Here is some J.T.W. code to show you what I mean:

class A

property int data;

method void foo ()

System.out.println(STRINGBGFG("data=") + data);

bar(); PRINTS OUT: bar!

method void bar ()

System.out.println(STRINGBGFG(”bar!”));

The foo method can be identically rewritten as follows:

class A

property int data;

method void foo ()

System.out.println(STRINGBGFG("data=") + this.data);

this.bar(); PRINTS OUT: bar!

method void bar ()

System.out.println(STRINGBGFG(”bar!”));

Therefore this.data inside the A class is the same as data and this.bar() inside the A class
is the same as bar(). A difference occurs when there is a parameter called data, in which case
this.data and data refer to different variables, the former to the property data and the latter
to the parameter data. You can exploit this difference by writing your constructor like so:

class A

property int data;

constructor A(int data)

this.data = data;

110 CHAPTER 2. THE J.T.W. LANGUAGE

enterSea()

Jeep

soundHorn()

SeaVessel

displacement

launch()

Frigate

fireGun()

Vehicle

maxSpeed

LandVehicle

numWheels

drive()

maxPassengers
name

Hovercraft

enterLand()

Figure 2.3: A U.M.L diagram for C++

or for more parameters, like so:

class A

property int data1;

property int data2;

property int data3;

constructor A(int data1, int data2, int data3)

this.data1 = data1;

this.data2 = data2;

this.data3 = data3;

The only difference between the Java code and C++ code is that this in C++ is a pointer
to the current object rather than a reference to the current object like it is in Java. Therefore in
C++ and Lisp++ you write this->data rather than this.data in Java and J.T.W.

2.15 Interfaces in Java and J.T.W.

This section explains how interfaces in Java and J.T.W. are a solution to C++’s problematic
multiple inheritance. Consider Figure 2.3 for an example. The Hovercraft class shown in the
diagram inherits from both LandVehicle and SeaVessel since the hover-craft is in the rather
unique position of being able to travel on land and sea. The Hovercraft class cannot be expressed

2.16. PACKAGES IN JAVA AND J.T.W. 111

in Java since Java does not have the facility for multiple inheritance. All other classes in the
diagram use single inheritance and so they can be expressed in Java.

One of the problems with multiple inheritance is in deciding what to do with propertys
in a class like Vehicle that is an indirect superclass of Hovercraft in two different ways, via
LandVehicle and via SeaVessel. The hover-craft in being able to drive on land and sea might
have two different maximum speeds, one for land travel and the other for sea travel. This leads
to a problem of what should be the appropriate value for the maxSpeed property of Hovercraft
objects? We could set maxSpeed to be the maximum of the two speed values but then this might
badly affect the behaviour of the drive method which, because it is defined in the LandVehicle

class, might assume that the value of maxSpeed is the maximum speed attainable on land. A
similar problem arises with the launch method.

Another approach would be for the Hovercraft class to possess two separate maxSpeed prop-
ertys, one for the maximum speed on land and the other for the maximum speed on the sea. The
C++ language gives the programmer a choice between having one or two copies of maxSpeed with
the option of using virtual base classes rather than normal inheritance, whereas Java avoids this
extra complexity by not allowing multiple inheritance.

So that the Java programmer is not disadvantaged by the lack of multiple inheritance, Java
has the interface feature, which allows for a kind of multiple inheritance involving interfaces,
without the complexity of multiple inheritance of classes that is present in languages like C++.
Figure 2.4 shows on the left a diagram showing how interfaces in Java relate to the Java concepts
of classes and objects. On the right is a diagram showing the equivalent concepts in C++.

The diagram shows that in a sense interfaces are a “higher level concept” than classes, since
you can never create an instance of an interface, only instances of classes that implement that
interface. Interfaces have no constructors.

The most important feature of interfaces is that a class can implement more than one inter-
face. Interfaces are limited in two respects. Firstly, they are not allowed to have any propertys
except static constants, and secondly the methods of an interface must be defined without
bodies, like abstract methods. These two limitations prevent interfaces from suffering from
the problem that occurred with the maxSpeed property in the previous U.M.L. diagram.

We can re-work the previous U.M.L. diagram into something that can be expressed within the
Java language by replacing the classes Vehicle, LandVehicle and SeaVessel with interfaces
IsVehicle, IsLandVehicle and IsSeaVessel, respectively. The dotted arrows in Figure 2.5
indicate interfaces extending from interfaces. Note that the Hovercraft class implements
both the IsLandVehicle and IsSeaVessel interfaces, rather than inheriting from two classes
which is not allowed in Java.

Since an interface is not allowed to have any propertys except static constants, we have
replaced the propertys that existed in the classes Vehicle, LandVehicle and SeaVessel with
“getter” and “setter” methods. That is to say that, for each property X, there is now a pair of
methods getX and setX. A getX, setX pair of public methods in a class is logically equivalent
for users of the class to a public property called X. Since the methods of the interfaces
are defined without bodies, they are defined in the classes Jeep, Hovercraft and Frigate that
implement the three interfaces. The getMaxSpeed() method could return the maximum speed
depending on whether or not the vehicle is currently on the land or on the sea, and similarly for
the setMaxSpeed() method.

2.16 Packages in Java and J.T.W.

2.16.1 Package visibility

In Java and J.T.W. when an object is declared with package visibility it gains a level of protection
between protected and private.

112 CHAPTER 2. THE J.T.W. LANGUAGE

classes.

can extend

one or more

other interfaces.

An object

is an instance

of a class.

An object

is an instance

of a class.

A class

can extend

another class.

An interface

interface

class

object

Java C++

class

object

A class

can implement

one or more

interfaces.
A class

more other

can inherit

from one or

Figure 2.4: Comparision of Java’s objects, classes and interfaces with C++’s objects and classes.
Note that to simulate Java’s interfaces in C++ it is sufficient to use abstract classes, that is to
say: classes with at least one pure virtual method.

Frigate

fireGun()

setDisplacement(int)

getDisplacement()

launch()

getNumWheels()

setNumWheels(int)

drive()

IsSeaVesselIsLandVehicle
<<interface>> <<interface>>

getName()

setName(String)

getMaxPassengers()

setMaxPassengers(int)

getMaxSpeed()

setMaxSpeed(int)

IsVehicle
<<interface>>

Hovercraft

enterLand()
enterSea()

Jeep

soundHorn()

Figure 2.5: A U.M.L diagram for Java. Note that dotted lines represent interfaces extending
from one another.

2.16. PACKAGES IN JAVA AND J.T.W. 113

public protected package private
visibility visibility visibility visibility

In the same class as X 4 4 4 4

In the same package as X 4 4 4 6

In a subclass of X but a different package 4 4 6 6

Anywhere else 4 6 6 6

To get package visibility, simply omit public, private and protected from the method, prop-
erty or constructor spec, e.g. like so in J.T.W.:

// BEGIN FILE: A.jtw

class A
begin

function void package visible function ()

begin

// NOTE: code goes here

end
method void package visible method ()

begin

// NOTE: code goes here

end
property int package visible property;

classVar int package visible class variable;

end
// END FILE: A.jtw

and like so in Java:

// BEGIN FILE: A.java

class A
{

static void package visible function ()

{
// NOTE: code goes here

}
void package visible method ()

{
// NOTE: code goes here

}
int package visible property;

static int package visible class variable;

}
// END FILE: A.java

2.16.2 Moving a class into a package

Consider a typical class:

// BEGIN FILE: jtw-tutorials/A.jtw

class A
begin

property int data;

classVar int data2 = 666;

constructor A(int data)

begin

114 CHAPTER 2. THE J.T.W. LANGUAGE

this.data = data;

end

method void meth1 ()

begin
System.out.println "meth1: abcdefghijklmnopqrstuvwxyz" + data);

end

method void meth2 ()

begin
System.out.println "meth2:" + data);

end

function void func ()

begin
System.out.println "func:" + data2);

end

beginMain
var A a1 = new A(123);

a1.meth1(); PRINTS OUT: meth1:123

var A a2 = new A(456);

a2.meth2(); PRINTS OUT: meth2:456

A.func(); PRINTS OUT: func:666

endMain
end
// END FILE: jtw-tutorials/A.jtw

To move this class into a package called (for argument’s sake) pkg, you need to set the class’s
visibility status from none (i.e. package visibility) to public. Also each package visible (i.e. no
private or public or protected specification) class variable, function, method and property
needs to have its visibility status changed from package to public if you want to be able to access
these items from outside of the package. If you have more than one class in the same file, they
will have to be separated into separate files as you can only have one public class per file. Also
the name of the package must be declared via a package specification like so package pkg; Here
is the same source file, ready to be put into a package:

// BEGIN FILE: jtw-tutorials/pkg/A.jtw

package pkg;

public class A
begin

public property int data;

public classVar int data2 = 666;

public constructor A(int data)

begin
this.data = data;

end

public method void meth1 ()

begin
System.out.println "meth1:" + data);

end

public method void meth2 ()

begin
System.out.println "meth2:" + data);

end

public function void func ()

2.16. PACKAGES IN JAVA AND J.T.W. 115

begin
System.out.println "func:" + data2);

end

beginMain
var A a1 = new A(123);

a1.meth1(); // PRINTS OUT: meth1:123

var A a2 = new A(456);

a2.meth2(); // PRINTS OUT: meth2:456

A.func(); // PRINTS OUT: func:666

endMain
end
// END FILE: jtw-tutorials/pkg/A.jtw

Also the source file for the class needs to be moved into the folder ~/jtw-tutorials/pkg. To
run the class, you will need to invoke the Makefile command:

make build pkg/A.run

2.16.3 Moving a class into a sub-package

Suppose you want to move a class A from no package (the folder ~/jtw-tutorials) to a package
called for argument’s sake pkg.inner, the steps from the §2.16.2 needs to be followed, the only
difference being that the package spec needs to be changed to package pkg.inner; and the file
needs to be moved into the folder pkg/inner. To run the class file you need to invoke the following
Make command:

make build pkg/inner/A.run.

Here is the class definition for the file ~/jtw-tutorials/pkg/inner/A.jtw:

// BEGIN FILE: jtw-tutorials/pkg/inner/A.jtw

package pkg.inner;

public class A
begin

public property int data;

public classVar int data2 = 666;

public constructor A(int data)

begin
this.data = data;

end

public method void meth1 ()

begin
System.out.println "meth1:" + data);

end

public method void meth2 ()

begin
System.out.println "meth2:" + data);

end

public function void func ()

begin
System.out.println "func:" + data2);

end

beginMain

116 CHAPTER 2. THE J.T.W. LANGUAGE

var A a1 = new A(123);

a1.meth1(); // PRINTS OUT: meth1:123

var A a2 = new A(456);

a2.meth2(); // PRINTS OUT: meth2:456

A.func(); // PRINTS OUT: func:666

endMain
end
// END FILE: jtw-tutorials/pkg/inner/A.jtw

2.16.4 Importing a package

When referring to a class or interface in a package you need to specify the package name in front
of every class name and interface name in the package you want to access, like so, in the main
folder ~/jtw-tutorials (outside of any package):

// BEGIN FILE: jtw-tutorials/B.jtw

class B
begin

beginMain
var pkg.A a1 = new pkg.A(123);

a1.meth1(); // PRINTS OUT: meth1:123

var pkg.A a2 = new pkg.A(456);

a2.meth2(); // PRINTS OUT: meth2:456

pkg.A.func(); // PRINTS OUT: func:666

endMain
end
// END FILE: jtw-tutorials/B.jtw

To avoid having to qualify each class name and interface name with it’s package, you need to
use the import directive like so before the definition of the class like so:

// BEGIN FILE: jtw-tutorials/B2.jtw

import pkg.*;

class B2
begin

beginMain
var A a1 = new A(123);

a1.meth1(); // PRINTS OUT: meth1:123

var A a2 = new A(456);

a2.meth2(); // PRINTS OUT: meth2:456

A.func(); // PRINTS OUT: func:666

endMain
end
// END FILE: jtw-tutorials/B2.jtw

2.16.5 Importing a package from another package

When referring to a class or interface in a package you need to specify the package name:
package pkg; at the top of the file before any actual code. Where the pkg package lives in a
folder called ~/jtw-tutorials/pkg.

// BEGIN FILE: jtw-tutorials/pkg/C.jtw

package pkg;

public class C
begin

2.16. PACKAGES IN JAVA AND J.T.W. 117

beginMain
var pkg.inner.A a1 = new pkg.inner.A(123);

a1.meth1(); // PRINTS OUT: meth1:123

var pkg.inner.A a2 = new pkg.inner.A(456);

a2.meth2(); // PRINTS OUT: meth2:456

pkg.inner.A.func(); // PRINTS OUT: func:666

endMain
end
// END FILE: jtw-tutorials/pkg/C.jtw

To avoid having to qualify each class name or interface name with it’s package, you need to use
the import directive like so after the package declaration but before the definition of the class
like so:

// BEGIN FILE: jtw-tutorials/pkg/C2.jtw

package pkg;

import pkg.inner.*;

public class C2
begin

beginMain
var A a1 = new A(123);

a1.meth1(); // PRINTS OUT: meth1:123

var A a2 = new A(456);

a2.meth2(); // PRINTS OUT: meth2:456

A.func(); // PRINTS OUT: func:666

endMain
end
// END FILE: jtw-tutorials/pkg/C2.jtw

2.16.6 Modifying the Makefile to build a class that calls other class(es)

When your class X uses another class Y then you need to add to the build target which is
initially like so:

build: clean

to what follows:

build: clean Y.java

If your class Y is in another package such as the class ~/jtw-tutorials/path/to/dir/Y.class
i.e. in the package path.to.dir then you need to add to the build target like so:

build: clean path/to/dir/Y.java

This process should be repeated for every class that is called, directly or indirectly from your
main class X. This process can be applied to build an entire package when you simply issue the

command make build. To actually build and run the X class, let ~/jtw-tutorials/path2/to/dir/X.class
be the location of the X class. Then you need to invoke the following Makefile target:

make build path2/to/dir/X.run

The “build” target calls the “clean” target which deletes all *.java and *.class files directly
or indirectly in the folder ~/jtw-tutorials. If you don’t do this then java might run an old
version of *.class files despite earlier errors in the build process. This is because the use of pipes
in building and executing *.class files hides the return values of the programs javac and java.

118 CHAPTER 2. THE J.T.W. LANGUAGE

2.16.7 Running javadoc on a package

To invoke javadoc, you need to issue the following command from the folder ~/jtw-tutorials:

make build

See §2.16.6 for more information about setting up the build target. Then you need to issue the
following command from the folder ~/jtw-tutorials:

javadoc path3/to/pkg -d /path4/to/dir

where path3.to.pkg is the name of the package that you want to build and /path4/to/dir is
the desired location for your documentation files in *.html format.

2.17 Passwords for the J.T.W. tutorial answers

Here are the passwords for the tutorials, which are located at the following Website:

davin.50webs.com/J.T.W

The place to enter your passwords is Section 3 of the above Web page.

No. Password

1 policefish

2 chessweta

3 tallpencil

4 freshwhale

5 sneakermagic

6 kingpump

7 lakemarmite

8 nutriciouslamps

9 sadbutter

10 skyfresh

11 fivemagpies

12 phonesheds

13 dawnsweet

14 nightroads

15 blackscrews

16 snowfrog

17 tenflower

http://davin.50webs.com/J.T.W

Chapter 3

J.T.W. Software License

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted
to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your freedom
to share and change the works. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change all versions of a program–to make sure it remains
free software for all its users. We, the Free Software Foundation, use the GNU General Public
License for most of our software; it applies also to any other work released this way by its authors.
You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for them if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs, and that you know you can
do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you
to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
pass on to the recipients the same freedoms that you received. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they know their
rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on
the software, and (2) offer you this License giving you legal permission to copy, distribute and/or
modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty
for this free software. For both users’ and authors’ sake, the GPL requires that modified versions
be marked as changed, so that their problems will not be attributed erroneously to authors of
previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incompatible
with the aim of protecting users’ freedom to change the software. The systematic pattern of such

119

120 CHAPTER 3. J.T.W. SOFTWARE LICENSE

abuse occurs in the area of products for individuals to use, which is precisely where it is most
unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for
those products. If such problems arise substantially in other domains, we stand ready to extend
this provision to those domains in future versions of the GPL, as needed to protect the freedom
of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in those
that do, we wish to avoid the special danger that patents applied to a free program could make
it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render
the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.
“Copyright” also means copyright-like laws that apply to other kinds of works, such as semi-

conductor masks.
“The Program” refers to any copyrightable work licensed under this License. Each licensee is

addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.
To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring

copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.
To “propagate” a work means to do anything with it that, without permission, would make

you directly or secondarily liable for infringement under applicable copyright law, except executing
it on a computer or modifying a private copy. Propagation includes copying, distribution (with
or without modification), making available to the public, and in some countries other activities as
well.

To “convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer of a
copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes
a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and
(2) tells the user that there is no warranty for the work (except to the extent that warranties are
provided), that licensees may convey the work under this License, and how to view a copy of this
License. If the interface presents a list of user commands or options, such as a menu, a prominent
item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to
it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which is not
part of that Major Component, and (b) serves only to enable use of the work with that Major
Component, or to implement a Standard Interface for which an implementation is available to
the public in source code form. A “Major Component”, in this context, means a major essential

121

component (kernel, window system, and so on) of the specific operating system (if any) on which
the executable work runs, or a compiler used to produce the work, or an object code interpreter
used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed
to generate, install, and (for an executable work) run the object code and to modify the work,
including scripts to control those activities. However, it does not include the work’s System
Libraries, or general-purpose tools or generally available free programs which are used unmodified
in performing those activities but which are not part of the work. For example, Corresponding
Source includes interface definition files associated with source files for the work, and the source
code for shared libraries and dynamically linked subprograms that the work is specifically designed
to require, such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically
from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a covered work is covered
by this License only if the output, given its content, constitutes a covered work. This License
acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others for the
sole purpose of having them make modifications exclusively for you, or provide you with facilities
for running those works, provided that you comply with the terms of this License in conveying
all material for which you do not control copyright. Those thus making or running the covered
works for you must do so exclusively on your behalf, under your direction and control, on terms
that prohibit them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention
Law.

No covered work shall be deemed part of an effective technological measure under any applicable
law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December
1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of tech-
nological measures to the extent such circumvention is effected by exercising rights under this
License with respect to the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s users, your or third parties’
legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice; keep intact all notices stating that this License and any non-permissive terms added in

122 CHAPTER 3. J.T.W. SOFTWARE LICENSE

accord with section 7 apply to the code; keep intact all notices of the absence of any warranty;
and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support
or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also meet all
of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving
a relevant date.
b) The work must carry prominent notices stating that it is released under this
License and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.
c) You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.
d) If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by
their nature extensions of the covered work, and which are not combined with it such as to form
a Larger program, in or on a volume of a storage or distribution medium, is called an “aggregate”
if the compilation and its resulting copyright are not used to limit the access or legal rights of the
compilation’s users beyond what the individual works permit. Inclusion of a covered work in an
aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided
that you also convey the machine-readable Corresponding Source under the terms of this License,
in one of these ways:

123

a) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by the Corresponding Source fixed
on a durable physical medium customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by a written offer, valid for at least
three years and valid for as long as you offer spare parts or customer support for
that product model, to give anyone who possesses the object code either (1) a copy
of the Corresponding Source for all the software in the product that is covered by
this License, on a durable physical medium customarily used for software inter-
change, for a price no more than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the Corresponding Source from a
network server at no charge.
c) Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.
d) Convey the object code by offering access from a designated place (gratis or
for a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided you inform
other peers where the object code and Corresponding Source of the work are being
offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding
Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything
designed or sold for incorporation into a dwelling. In determining whether a product is a consumer
product, doubtful cases shall be resolved in favor of coverage. For a particular product received
by a particular user, “normally used” refers to a typical or common use of that class of product,
regardless of the status of the particular user or of the way in which the particular user actually
uses, or expects or is expected to use, the product. A product is a consumer product regardless
of whether the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered work in
that User Product from a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object code is in no case prevented
or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a transaction in which the right of possession and use
of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of
how the transaction is characterized), the Corresponding Source conveyed under this section must
be accompanied by the Installation Information. But this requirement does not apply if neither
you nor any third party retains the ability to install modified object code on the User Product
(for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue

124 CHAPTER 3. J.T.W. SOFTWARE LICENSE

to provide support service, warranty, or updates for a work that has been modified or installed
by the recipient, or for the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and adversely affects the operation
of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation available
to the public in source code form), and must require no special password or key for unpacking,
reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions
from one or more of its conditions. Additional permissions that are applicable to the entire
Program shall be treated as though they were included in this License, to the extent that they
are valid under applicable law. If additional permissions apply only to part of the Program, that
part may be used separately under those permissions, but the entire Program remains governed
by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written to
require their own removal in certain cases when you modify the work.) You may place addi-
tional permissions on material, added by you to a covered work, for which you have or can give
appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections
15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or author attribu-
tions in that material or in the Appropriate Legal Notices displayed by works
containing it; or
c) Prohibiting misrepresentation of the origin of that material, or requiring that
modified versions of such material be marked in reasonable ways as different from
the original version; or
d) Limiting the use for publicity purposes of names of licensors or authors of the
material; or
e) Declining to grant rights under trademark law for use of some trade names,
trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that material by anyone
who conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction, you may
remove that term. If a license document contains a further restriction but permits relicensing or
conveying under this License, you may add to a covered work material governed by the terms of
that license document, provided that the further restriction does not survive such relicensing or
conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant
source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

125

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License.
Any attempt otherwise to propagate or modify it is void, and will automatically terminate your
rights under this License (including any patent licenses granted under the third paragraph of
section 11).

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time you
have received notice of violation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, you do not qualify to receive new licenses for the same material
under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer
transmission to receive a copy likewise does not require acceptance. However, nothing other than
this License grants you permission to propagate or modify any covered work. These actions infringe
copyright if you do not accept this License. Therefore, by modifying or propagating a covered
work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the
original licensors, to run, modify and propagate that work, subject to this License. You are not
responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially
all assets of one, or subdividing an organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to that transaction who receives a
copy of the work also receives whatever licenses to the work the party’s predecessor in interest
had or could give under the previous paragraph, plus a right to possession of the Corresponding
Source of the work from the predecessor in interest, if the predecessor has it or can get it with
reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not initiate litigation (including a cross-
claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using,
selling, offering for sale, or importing the Program or any portion of it.

126 CHAPTER 3. J.T.W. SOFTWARE LICENSE

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but do
not include claims that would be infringed only as a consequence of further modification of the
contributor version. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run,
modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment,
however denominated, not to enforce a patent (such as an express permission to practice a patent
or covenant not to sue for patent infringement). To “grant” such a patent license to a party means
to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means, then
you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive
yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent license to downstream
recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license,
your conveying the covered work in a country, or your recipient’s use of the covered work in a
country, would infringe one or more identifiable patents in that country that you have reason to
believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some of
the parties receiving the covered work authorizing them to use, propagate, modify or convey a
specific copy of the covered work, then the patent license you grant is automatically extended to
all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered work if you are a party to
an arrangement with a third party that is in the business of distributing software, under which you
make payment to the third party based on the extent of your activity of conveying the work, and
under which the third party grants, to any of the parties who would receive the covered work from
you, a discriminatory patent license (a) in connection with copies of the covered work conveyed
by you (or copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other
defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict
the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot convey a covered work so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not convey it at all. For
example, if you agree to terms that obligate you to collect a royalty for further conveying from

127

those to whom you convey the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any
covered work with a work licensed under version 3 of the GNU Affero General Public License into
a single combined work, and to convey the resulting work. The terms of this License will continue
to apply to the part which is the covered work, but the special requirements of the GNU Affero
General Public License, section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU General Public License “or any later version” applies to it, you have
the option of following the terms and conditions either of that numbered version or of any later
version published by the Free Software Foundation. If the Program does not specify a version
number of the GNU General Public License, you may choose any version ever published by the
Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General
Public License can be used, that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional
obligations are imposed on any author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM

128 CHAPTER 3. J.T.W. SOFTWARE LICENSE

TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively state the exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright
(C) <year> <name of author>
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when it starts

in an interactive mode:

<program> Copyright (C) <year> <name of author> This program comes with
ABSOLUTELY NO WARRANTY; for details type ‘show w’. This is free software,
and you are welcome to redistribute it under certain conditions; type ‘show c’ for
details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for a GUI
interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more use-
ful to permit linking proprietary applications with the library. If this is what you want to
do, use the GNU Lesser General Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

Bibliography

[GRHV95] E. Gamma, R. Johnson R. Helm, and J. Vlissides, Design patterns: Elements of
reusable object-oriented software, Addison Wesley, 1995.

[Sei05] Peter Seibel, Practical common lisp, Springer-Verlag, 2005.

129

Index

.emacs file, 12

An idiom for constructors in Java and C++,
107

and, 11, 14
Arguments, 16
Arrays, 16

BASIC, 11
begin, 11
beginMain, 11
boilerplate code, 9

C++
Multiple inheritance, 108

C/C++
Variable names, 86

caMeL case, 86
Class variables, 11, 14, 16
classvar, 14
Comments, 16
Constructors, 11, 14
Converting methods to functions and vice-

versa, 16

Delphi, 11

elseif, 14
emacs-25.2-i686.zip, 12
end, 11
endMain, 11
Error

missing ends at the end of the file, 86
var needs a class name or etc., 86

File inclusion in J.T.W., 11
for construct, 16
Functions, 11, 14, 16

Getter and setter macros, 66
GNU Emacs

Installing, 12
Why use it?, 12

GNU General Public License, 117

Hello, World, 15

HOME environment variable, 12

Indentation preferences, 85
Inheritance, 17

to reduce the amount of duplication of code,
17

Installing GNU Emacs, 12

J.T.W., 11
do . . . while construct, 16
for construct, 16
superfor, 11
superfor construct, 16
while construct, 16
Arguments, 16
Comments, 16
Functions, 16
Parameters, 16
Strings, 16
System.out.println(), 16
Arrays, 16
Class variables, 14, 16
Constructors, 14
Converting methods to functions and vice-

versa, 16
File inclusion, 11, 83
Functions, 14, 16
Getter and setter methods, 17
Inheritance, 17
Instance variables, 16
Interfaces, 108
Linked lists, 17
Methods, 14, 16
Overloading methods, 16
parser, 11
Polymorphism, 17
Proofs of concept, 66

A superfor macro, 76
File inclusion, 83

Properties, 14
References, 17
Strings, 16
Swapping propertys, 16
to Java mapping, 11
Var, 14

130

INDEX 131

Variable names, 86
Java

Interfaces, 108
Squiggly brackets, 86
Variable names, 86

JavaScript, 11
jtw-build-java.el, 100
jtw-java.el, 103
jtw-javac.el, 100
jtw-mode.el, 90

Limitation of warranty, 10
Linked lists, 17
Lisp++

Parenthesis, 86

Main function, 15
main function, 11
Methods, 11, 14
My first program, running, 15

Non-object arrays, 16

O.O.P., 40
Object arrays, 16
Object-Oriented Programming, 40
or, 11, 14
Overloading methods, 16

Packages and package visibility in Java and J.T.W.,
109

Parameters, 16
Pascal, 11
Passwords for the J.T.W. tutorial answers, 116
Polymorphism, 17

rather than run-time type enquiry, 17
Properties, 11, 14
public static void main (String args), 11, 15

References, 17

Squiggly brackets, 86
Stallman, Richard Matthew (rms), 9
Star Wars, 60
Strings, 16
Super-loops in J.T.W, 76
superfor, 11
superfor construct, 16
superfor macro, 76
Swapping propertys, 16
System.out.println(), 16

then, 11, 14
Tie Fighter, 60
Tiresome repetitive “boilerplate” code, 9

Translator *.jtw to *.class, 100

var, 11, 14
Variable names, 86

Why use GNU Emacs?, 12

X-Wing, 60

Praise for my book: “Davin is bright and has a deep understanding of programming matters.”, Dr Andy Cockburn,
email: andy<at>cosc<dot>canterbury<dot>canterbury<dot>ac<dot>nz Associate Professor of the Depart-
ment of Computer Science, the University of Canterbury, Christchurch, New Zealand.

Michael Pagan, email: michael<at>pagan<at>member<dot>fsf<dot>org, said of it: “I must say, his book
is very well organised and easy to understand for a beginner like me . . .Once I get deep into this book, I’d like to
send him my comments. Java is such a great language and to have a book that covers it in such an eloquent way
while involving Emacs in the process is too much of a rarity and a delight for me to ignore.”

This book is about how to add a preprocessor to the Java language to turbo charge its performance. Both
expressiveness and efficiency can be improved using a preprocessor. The preprocessor language is called J.T.W.
which stands for Java Training Wheels and is intended to make it easier for novices to program in Java. The
suitability of Richard Stallman’s GNU Emacs text editor for hosting this preprocessor language is demonstrated
by examples. If you are especially clever, you can write your own Emacs Lisp d-defmacros to replace blocks of
tiresome repetitive “boilerplate” code in Java. A small collection of d-defmacros have been written for you to
deploy in your client code.

Davin Pearson was born in 1973 and is an ex-Computer Science tutor from the University of Canterbury,
Christchurch, New Zealand. He has three and a half years of experience tutoring Stage I Computer Science
programming courses to computer programming novices. He is probably New Zealand’s foremost exponent of GNU
Emacs having used it for 20 years (Happy Anniversary Emacs!) and having written over 55,000 lines of Emacs Lisp
customisation code some of which he has published. While on his beloved computer he enjoys listening to music
of all genres and while not on his computer he enjoys reading literature of all genres. For more information please
visit his personal Website at davin.50webs.com. Photograph c©2017 Simone Pearson.

http://davin.50webs.com

	Introduction
	The J.T.W. language
	Why learn to use J.T.W.?
	GNU Emacs as a development environment
	Why use GNU Emacs as your development environment?
	Installing GNU Emacs

	Installing the installer module for c++2lisp++2c++
	Uninstalling c++2lisp++2c++

	Introducing J.T.W. keywords
	Your first program
	Building J.T.W. into Java and running class files

	J.T.W. Tutorials
	Tutorial 1
	Tutorial 2
	Tutorial 3
	Tutorial 4
	Tutorial 5
	Tutorial 6
	Tutorial 7
	Tutorial 8
	Tutorial 9
	Tutorial 10
	Tutorial 11
	Tutorial 12
	Tutorial 13
	Tutorial 14
	Tutorial 15
	Tutorial 16
	Tutorial 17

	Proofs of concept for the J.T.W language
	Proof of concept #1: A small collection of d-defmacros for your use in client code
	Proof of concept #2: A superfor macro
	Proof of concept #3: File inclusion

	Java/J.T.W./C++ coding preferences
	Parenthesis and squigglies { … } instead of begin … end
	Troubleshooting J.T.W. code
	Mapping from J.T.W. to Java
	Choosing a preprocessor language for J.T.W.
	Piping the output of javac and java
	The GNU Makefile for building *.java files and grey*.class files

	Elisp code for editing *.jtw files
	Translator *.jtw to *.class Elisp source code
	jtw-build-java.el Elisp source code
	jtw-javac.el Elisp source code
	jtw-java.el Elisp source code

	An idiom for constructors in Java and C++
	Interfaces in Java and J.T.W.
	Packages in Java and J.T.W.
	Package visibility
	Moving a class into a package
	Moving a class into a sub-package
	Importing a package
	Importing a package from another package
	Modifying the Makefile to build a class that calls other class(es)
	Running javadoc on a package

	Passwords for the J.T.W. tutorial answers

	J.T.W. Software License

