
Part 1/3 of a Ph.D. Thesis

By Davin Pearson

Eleventh Edition

programming language

The GNU Java Training Wheels

for making it easier to learn Java

The GNU Java Training Wheels
programming language for making

it easier to learn Java
Part 1/3 of a A Ph.D. thesis

Eleventh edition c©2018 Davin Max Pearson

February 22, 2019

Abstract

This book is about how to add a preprocessor to the Java language to turbo-
charge its performance and to create a new programming language called GNU
Java Training Wheels or J.T.W. for short. Both expressiveness and efficiency can
be improved using preprocessor languages. J.T.W. has been created specifically for
novice Java programmers who want to learn Java. In particular Pascal-style begin
. . . end constructs are supported instead of Java’s { . . . } construct, which makes
J.T.W. code much more readable than the equivalent Java code. J.T.W. translates
to Java in a natural and straightforward manner so it is easy for J.T.W. program-
mers to learn Java. J.T.W. is supported by easy to understand error messages so
it is easy to debug J.T.W. code. For many reasons you might prefer to code in
J.T.W. rather than Java. Experienced programmers will find J.T.W. useful too.
Emacs Lisp is used as the preprocessor for the Java and C++ languages because
it is powerful enough for my needs and it is free software. That is to say free as
in free speech and not free beer. Lisp is a higher level language than Java and
is powerful enough to render obsolete blocks of tiresome repetitive boilerplate code
that dominates code written in Java. A small collection of d-defmacros have been
provided for you to deploy in your client code. If you are especially clever, you can
write your own Emacs Lisp d-defmacros to replace blocks of tiresome repetitive
boilerplate code in Java. The idea for eliminating tiresome repetitive boilerplate
code comes from Peter Seibel’s 2005 book [Sei05] Practical Common Lisp which
devotes an entire chapter (chapter 9) to eliminating tiresome repetitive boilerplate
code from Common Lisp code.

Released under the GNU Free Documentation License1

Published by lulu.com in association with davinpearson.com .

ISBN: 978-0-244-348786

1www.gnu.org/copyleft/fdl.html

http://www.gnu.org/copyleft/fdl.html
http://lulu.com
http://davinpearson.com
http://www.gnu.org/copyleft/fdl.html

For Dorothy

4

Contents

1 Introduction 11

2 The J.T.W. language 13
2.1 Why learn to use J.T.W.? . 13
2.2 GNU Emacs as a development environment . 14

2.2.1 Why use GNU Emacs as your development environment? 14
2.2.2 Installing GNU Emacs . 14

2.3 Installing the installer module for J.T.W. 15
2.3.1 Uninstalling J.T.W. 16

2.4 Introducing J.T.W. keywords . 16
2.5 Your first program . 17

2.5.1 Building J.T.W. into Java and running class files 17
2.6 J.T.W. Tutorials . 18

2.6.1 Tutorial 1 . 19
2.6.2 Tutorial 2 . 22
2.6.3 Tutorial 3 . 23
2.6.4 Tutorial 4 . 26
2.6.5 Tutorial 5 . 27
2.6.6 Tutorial 6 . 30
2.6.7 Tutorial 7 . 31
2.6.8 Tutorial 8 . 34
2.6.9 Tutorial 9 . 40
2.6.10 Tutorial 10 . 47
2.6.11 Tutorial 11 . 50
2.6.12 Tutorial 12 . 52
2.6.13 Tutorial 13 . 54
2.6.14 Tutorial 14 . 56
2.6.15 Tutorial 15 . 58
2.6.16 Tutorial 16 . 62
2.6.17 Tutorial 17 . 66

2.7 Proofs of concept for the J.T.W language . 68
2.7.1 Proof of concept #1: A small collection of d-defmacros for your use in

client code . 68
2.7.2 Proof of concept #2: A superfor macro . 78
2.7.3 Proof of concept #3: File inclusion . 85

2.8 Java/J.T.W./C++ coding preferences . 87
2.9 Parenthesis and squigglies { . . . } instead of begin . . . end 88
2.10 Troubleshooting J.T.W. code . 88
2.11 Mapping from J.T.W. to Java . 90

2.11.1 Choosing a preprocessor language for J.T.W. 90
2.11.2 Piping the output of javac and java . 91
2.11.3 The GNU Makefile for building *.java files and *.class files 91

5

6 CONTENTS

2.12 Elisp code for editing *.jtw files . 92
2.13 Translator *.jtw to *.class Elisp source code . 104

2.13.1 jtw-build-java.el Elisp source code . 104
2.13.2 jtw-javac.el Elisp source code . 104
2.13.3 jtw-java.el Elisp source code . 107

2.14 An idiom for constructors in Java and C++ . 110
2.15 Interfaces in Java and J.T.W. 112
2.16 Packages in Java and J.T.W. 113

2.16.1 Package visibility . 113
2.16.2 Moving a class into a package . 115
2.16.3 Moving a class into a sub-package . 116
2.16.4 Importing a package . 117
2.16.5 Importing a package from another package 118
2.16.6 Modifying the Makefile to build a class that calls other class(es) 118
2.16.7 Running javadoc on a package . 119

2.17 Passwords for the J.T.W. tutorial answers . 119

3 J.T.W. Software License 121

Preface

Preface to the eleventh edition

Split my book from one book into two separate books, The Java Training Wheels programming
language and Building C++ Preprocessors: Using Lisp++ for Efficient and Expressive Programing

Preface to the tenth edition

Removed the C++ source code for the libd library because C++ is not supported by this version
(and future versions) Added a new section §?? called A solution to the first problem. Added a
new section ?? called Proof of concept 1: A small collection of d-defmacros for your use in your
Lisp++ client code. Also fontified all occurrences of private foo in the face “prvt”, short for
private.

Preface to the ninth edition

Fixed numerous typographical errors. Changed the link of my large files links from

davinpearson.com/binaries/large-files-links.html

to

davinpearson.com/binaries

so that uploads to this website are displayed by default without the need to update the file
large-files-links.html.

Preface to the eighth edition

Changed the save names for classes that begin with an initial capital letter. This overcomes
Microsoft Windows’ limitation in its filenames in how it cannot have two files with the same
name, only different in case, e.g. foo and Foo. Therefore a class X will now reside in files called
X.lisp++ and will be built into C++ source files X.h++, X.ch++ and X.c++. That way a
class called x can reside in a file called x.lisp++ and will be built into files called x.h++, x.ch++
and x.c++ and Windows won’t complain about three pairs of files different only in case. Actually

http://davinpearson.com/binaries/large-files-links.html
http://davinpearson.com/binaries

CONTENTS 7

instead of complaining, Windows silently overwrites one of each pair of files with the other, which is
hardly ideal behaviour. This scheme of things works equally well in GNU/Linux but is superfluous
in this case.

Preface to the seventh edition

Added syntax highlighting to the following textual elements:

NOTE: I am a note

COOL: I am a cool note

and similar textual elements. Added the following target to the manual’s Makefile in §2.11.3 that
was missing from earlier editions:

001 build-class-db:

002 @echo "* Stage 0 : Building class database"

003 emacs --batch --eval "(setq dir \"$(PREFIX)/share/emacs/site-lisp/dlisp/\")" \
004 --load $(PREFIX)/share/emacs/site-lisp/dlisp/jtw-build-class-db.el --funcall doit

005

006 clean: build-class-db

Added section §?? on installing a C/C++ compiler.

Preface to the sixth edition

Put back sections §?? and §?? that were accidentally removed from the previous edition. In §2.16.4
removed the fontification of the word main → main. Also changed \begin{ enumerate } . . .

\end{ enumerate } → \begin{ itemize } . . . \end{ itemize } in section §2.10. Centralised
the diagrams in Figures ??, ?? and ??.

Preface to the fifth edition

Upped the number of lines of code written from 53,000→ 54,000. Moved An idiom for construc-
tors from §?? to §2. Also updated the code to reflect this change. Expanded the section in §??.
Removed the section Debugging crappyness of Lisp++ since it no longer applies.

Preface to the fourth edition

Added a new section Virtual Methods, see §??. Added a new section Run Time Type Inquiry,
see §??. Clipped extra long lines in the code listing in §2.7.2. Renamed methods in §?? from
x method1 → foo method1 etc. Corrected the following hyperlink in §??

davinpearson.com/binaries/large-files-size.html

→

davinpearson.com/binaries/large-files-links.html

Improved the diagram in Figure 2.1.

http://davinpearson.com/binaries/large-files-size.html
http://davinpearson.com/binaries/large-files-links.html

8 CONTENTS

Preface to the third edition

Added support for inline functions and methods and documentation of the cinline keyword.
See §?? for more information. Fixed the following bug in the documentation. See §2.16.4.

A → pkg.inner.A

Upped the lines of Emacs Lisp source code written count from 41,000→ 53,000 lines of code. I
now count experimental code as well as actively used code to get the higher value for the number
of lines of code written. This bumped up the number of lines of code by over 6,000.

Preface to the second edition

Removed the extraneous large source code file: Othello.lisp++ (1,000+ lines of code) from the
first edition of my book. Updated the lines of Emacs Lisp source code written count from 38,000
→ 41,000 lines of code.

Preface to the first edition

Wrote this book using the LATEX document-markup system, specifically pdfTex Version 3.1415926-
2.5-1.40.14 (TeX Live 2013/Debian). Also used the program xfig for drawing diagrams. Used the
following Emacs Lisp code for syntax highlighting the various code language buffers, using LATEX’s
\color{color name}{text to colourise} and \colorbox{color name}{text to colourise}.

davin.50webs.com/research/2010/d-latexize8.el.html

Executed d-latexize.el by issuing the following shell command:

emacs --batch --eval "(setq *target* \"/path/to/jtw11-ebook.tex\")" ←↩
--load $(PREFIX)/share/emacs/site-lisp/dlisp/d-latexize8.el --funcall doit

where /path/to/jtw11-ebook.tex is the name of the file you want to include into your LATEX
sources. In the above printout, note the use of the symbol←↩ to refer to a line of code that has been
clipped to fit onto the page. Note that $(PREFIX) is set by default to /usr/ under GNU/Linux or
c:/java-training-wheels/ under M.S. Windows. Ran the LATEX fontification engine on itself
to print out the following printout. Note the use of GNU m4 to provide logic for the printout:

// BEGIN FILE: ../m4-emacs-pretty-print-latex2.m4

001 a m4 changequote (,) m4 dnl a

002 a m4 changequote ([,]) m4 dnl a

003 a m4 define ([m4 emacs pretty print latex],

a

004 a\begin{ raggedright }
a

005 a\noindent{}\mbox{ m4 ifelse (-1, m4 regexp ($1,el),{\color{comm}{//}},{\color{comm}{;;}})
a

006 a{\bf\colorbox{begin-code-bg}{\color{begin-code-fg}{{\bfaB}EGINaFILE:}}}a
a

007 a{\bf\color{black}{{ m4 patsubst (m4 patsubst ($1, ,\),~,\~{})}}}}
a

008 a m4 syscmd (emacsa--batcha--evala "(setqa*target*a\"$1\")" a--loada~/dlisp/d-latexize9.ela←↩
a

009 a--debug-inita--funcalladoit)

a

010 a m4 esyscmd (cata$1.tex)a

011 a m4 ifelse (-1, m4 regexp ($1,el),{\color{comm}{//}},{\color{comm}{;;}})a m4 dnl a

012 a\mbox{{\bf\colorbox{begin-code-bg}{\color{begin-code-fg}{{\bfaE}NDaFILE:}}}\hspace{3.76mm}a m4 dnl a

013 a{\bf\color{black}{{ m4 patsubst (m4 patsubst ($1, ,\),~,\~{})}}}}

http://davin.50webs.com/research/2010/d-latexize8.el.html

CONTENTS 9

a

014 a m4 syscmd (rma-fa$1.tex)a

aa

015 a\end{ raggedright }
a

016 a)a

// END FILE: ../m4-emacs-pretty-print-latex2.m4

This macro is called like so:

001 m4 begin indent

002 m4 emacs pretty print latex (/path1/to/File.java) m4 dnl java-mode file

003 m4 emacs pretty print latex (/path2/to/File.jtw) m4 dnl jtw-mode file

004 m4 emacs pretty print latex (/path3/to/file.cc) m4 dnl c++-mode file

005 m4 emacs pretty print latex (/path4/to/file.c++) m4 dnl c++-mode file

006 m4 emacs pretty print latex (/path5/to/file.el) m4 dnl emacs-lisp-mode file

007 m4 emacs pretty print latex (/path6/to/file.lisp++) m4 dnl lisp++-mode file

008 m4 end indent

Where m4 begin indent and m4 end indent are defined like so:

001 m4 define ([m4 begin indent],[m4 dnl

002 \begin{ quote } m4 dnl

003 \begin{ tt } m4 dnl

004 \begin{ footnotesize } m4 dnl

005 m4 changequote (,) m4 dnl Turns m4 quotes off.

])

and like so:

001 m4 define ([m4 end indent],[m4 dnl

002 \end{ footnotesize } m4 dnl

003 \end{ tt } m4 dnl

004 \end{ quote } m4 dnl

005 m4 changequote (,) m4 dnl Turns m4 quotes off

006 m4 changequote ([,]) m4 dnl Changes m4 quotes back to [...]

007])

10 CONTENTS

Chapter 1

Introduction

This book is about how to add a preprocessor to the Java language to turbo-charge its performance.
Both expressiveness and efficiency can be improved using preprocessor languages. The preproces-
sor language is J.T.W.. J.T.W stands for Java Training Wheels, and is intended for computer
programming novices. The name Java Training Wheels was the outcome of an email conversation
with Dr. Richard Stallman1, the President of the Free Software Foundation2 and founder of the
GNU Project3, creator of GNU Emacs4, the GCC compiler5, and the GNU Debugger6 which
ultimately resulted in the GNU/Linux 7 operating system.

Since August 2016, J.T.W. has been accepted by Richard Stallman for inclusion into the Free
Software Foundation’s repository of Free software, so it is now known by the slightly longer name
GNU Java Training Wheels. Visit the following Web page on GNU’s Website for more information:

www.gnu.org/software/jtw

J.T.W. for example allows programmers to learn programming within an environment that
resembles Pascal and BASIC.

A small collection of d-defmacros have been written for you to deploy in your client code. If
you are especially clever, then you can write your own defmacros to eliminate tiresome repetitive
blocks of “boilerplate” code in Java. See §2.7.1 for how to add your own code to J.T.W.

As further proofs of concept for J.T.W. a superfor macro (see §2.7.2) is presented (much like
the for loop construct in BASIC), as well as a file inclusion system (see §2.7.3).

When I first learned the C programming language I was impressed by the power of its pre-
processor. Now in the twenty-first century, the C/C++ preprocessor seems like a remnant from
the dinosaur age with its lack of support for #defines with multiple template arguments and
the need for excessive backslashes to include blocks of code. Also I believe that the C/C++ pre-
processor is not so-called Turing complete, which means that its computational power is severely
limited. Emacs’ suitability for both preprocessing and editing preprocessor code will soon be
demonstrated to you the reader, if you will bare with me I will take you on a tour through some
existing languages and show you how their performance can be turbo-charged.

After learning the C and C++ language, I learned the similar GNU m4 programming language8

which is similar to the C/C++ preprocessor only more powerful, and used it to build a large (over
500 page) Website at

1stallman.org
2fsf.org
3gnu.org
4en.wikipedia.org/wiki/GNU Emacs
5en.wikipedia.org/wiki/GNU Compiler Collection
6en.wikipedia.org/wiki/GNU Debugger
7en.wikipedia.org/wiki/GNU/Linux
8en.wikipedia.org/wiki/GNU m4

11

http://stallman.org
http://fsf.org
http://gnu.org
http://en.wikipedia.org/wiki/GNU_Emacs
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/GNU/Linux
http://www.gnu.org/software/jtw
http://stallman.org
http://fsf.org
http://gnu.org
http://en.wikipedia.org/wiki/GNU_Emacs
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/GNU_Debugger
http://en.wikipedia.org/wiki/GNU/Linux
http://en.wikipedia.org/wiki/GNU_m4

12 CHAPTER 1. INTRODUCTION

davin.50webs.com

Sometime in between learning C++ and m4 I learned Java and used my knowledge of it to
tutor Stage I students in the language. Then I invented the J.T.W. programming language which
is intended for novices to help them to learn the Java language. I originally used m4 to compile
J.T.W. source code into Java code. It was then that I learned about m4’s limitations, specifically
how m4 operates on strings when it should leave them alone unchanged. More on this later.

I considered using Flex to compile J.T.W. into Java code but for simplicity I chose the slower
but simpler and more powerful technique of using GNU Emacs as a preprocessor. Specifically,
Emacs’ batch mode is used to compile J.T.W. into Java code. The batch mode code is written in
Emacs Lisp (or Elisp for short at the risk of confusion with an older unrelated language called
Elisp), the extension language for the GNU Emacs editor. Emacs is available but not compulsory
to be used as an editor. The main advantage of using Emacs as an editor as well as a preprocessor
is that it allows for syntax highlighting of J.T.W. constructs or whatever constructs your
language uses for the general case of adding a preprocessor language to your favourite language.
Also Emacs provides correct automatic indentation of J.T.W. code.

The J.T.W. programming language is subject to the GNU General Public License for maximum
freedom of extension. Therefore this program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See Chapter §3 for the license agreement.

Enjoy reading my book!

Davin Pearson
Christchurch
New Zealand

February 22, 2019

http://davin.50webs.com

Chapter 2

The J.T.W. language

2.1 Why learn to use J.T.W.?

The first part of this book presents a new programming language called J.T.W., short for Java
Training Wheels for the sole purpose of making it easier to learn to program in Java. The J.T.W.
language has a similar syntax to Delphi, Pascal, BASIC and JavaScript and therefore learning
J.T.W. before or while learning Java provides a less steep learning curve than learning Java from
scratch. For many reasons you might even prefer to program in J.T.W. rather than Java. Here is
why you should learn J.T.W. before or while learning Java:

• The J.T.W. language is supported by a parser that troubleshoots problematic J.T.W. code
with clear error messages.

• The J.T.W. language compiles to Java in a natural and straightforward way so it is easy to
learn Java once you know J.T.W. See Figure 2.1 for a comparison of the J.T.W. and Java
build processes.

• Pascal-style begin . . . end constructs are supported instead of C-style { ... } constructs
which is more sensible especially for novices.

• A simple syntax for the main function: beginMain ... endMain rather than the

rather cumbersome: public static void main (String[] args) { ... }.

• Class variables, propertys, functions, methods and constructors are declared as such
much like Delphi which makes your code look clearer. In particular there are new keywords
classVar, property, function, method and constructor.

• The Delphi/Pascal/JavaScript keyword var for clearer local variables.

• The Pascal/BASIC keyword then for clearer if statements.

• The BASIC keywords and and or rather than Java’s rather cumbersome: && and ||

• As proof of concept, a superfor macro is presented for enhanced BASIC-style for loops.

• As proof of concept, file inclusion is supported so that you can spread a class across several
files. Natural divisions are methods. Different methods can be placed in different source
files for those situations where methods become large and unwieldy.

NEW! J.T.W. Version 1.1 supports packages

13

14 CHAPTER 2. THE J.T.W. LANGUAGE

*.class

run class

*.java

*.jtw

emacs

javac | emacs

java | emacs

run class

*.class

*.java

java

javac

Figure 2.1: Above left is J.T.W.’s build process. Above right is Java’s build process. NOTE: the
vertical bar | represents a piping of the output of the first command into the input of the second
command. In the case of Emacs, its batch mode rather than interactive mode is used in the build
process. See §2.11.3 for the GNU Makefile for the details of this build process.

2.2 GNU Emacs as a development environment

2.2.1 Why use GNU Emacs as your development environment?

GNU Emacs is the most powerful editor in existence. Most of the Emacs source code is written
in a high level language called Emacs Lisp or Elisp for short. Therefore it is much easier to add
customizations than for any other program written in a lower level language such as C or C++.
Code can be easily written so that Emacs can host any language you care to use. For J.T.W. the
code has already been written for you in the form of jtw-mode.el. You can choose to use Emacs
with Davin Pearson’s customizations or Emacs with just Davin’s jtw-mode.el. It is recommended
that you use Emacs with all of Davin’s customizations (also known as Davin’s Full Version of GNU
Emacs) for maximal editing effectiveness. See the following website www.emacsrocks.com for some
cool stuff that Emacs can do.

2.2.2 Installing GNU Emacs

Installing GNU Emacs on Windows P.C.’s

1. First you need to download emacs-25.2-i686.zip or a later version from GNU’s Web-
site: ftp://ftp.gnu.org/pub/gnu/emacs/windows]. The file size is approximately 92
megabytes, about the size of twelve MP3 songs. The download time should a few min-
utes on Broadband Internet.

2. Then you need to unzip the archive to your c:/Program Files folder.

3. Then you need to set the HOME environment variable to a sensible value for your system. If
you have only one hard drive, then the most appropriate value for HOME is c:/home. If you
do not set the HOME variable, it will default to c:/ but the problem with this is that the root
directory of your hard drive will be cluttered with a whole bunch of files beginning with the
period character (.), eg. .*. Here is how you should go about achieving this:

(a) Firstly minimise any open windows.

(b) Press Windows E to open Windows Explorer.

(c) Right click on This P.C. or My Computer, depending on what version of Windows you
are running.

(d) Click on Properties and then click on Advanced.

http://www.emacsrocks.com
ftp://ftp.gnu.org/pub/gnu/emacs/windows

2.3. INSTALLING THE INSTALLER MODULE FOR J.T.W. 15

(e) Click on Environment Variables.

(f) In the User variables or System variables section, if there already is a value for the
HOME variable, then either keep it or change it to a sensible valuesuch as c:\home.

(g) To change it, click on HOME and then click Edit.

(h) When you have finished editing it then click on OK Keep pressing OK until you have
no windows left to close.

4. In Windows Explorer, click on the c: drive, then Program Files then emacs-25.0.95 (or
whatever version of Emacs that you have installed on your system), then bin then addpm.exe

to add a button to copy the Start Emacs button to your Desktop.

5. In the folder pointed to by the HOME variable, create a file called .emacs and save it to disk.
You can use Notepad to create such a file. To open Notepad, click on the Start button, then
All Programs, then Accessories, then Notepad.

2.3 Installing the installer module for J.T.W.

To install J.T.W. and, optionally Davin’s Full Version of GNU Emacs, follow the following in-
structions:

1. Untar the tarball preprocessors-YYYYmmdd-HHMMSS.tar.gz.

2. Change directory to the following directory: ~/preprocessors, and run the following com-
mand under M.S. Windows

bash install username ENTER

Note that under GNU/Linux you will need to be logged in as the root user. To achieve this,
simply wrap the above command with su ...exit like so:

su

bash install username ENTER

exit ENTER

Note that you will be prompted for the root password.

3. Note that under M.S. Windows you will need to have the program bash.exe installed on
your system. You can install this program from Cygwin1. It should be already installed on
GNU/Linux systems. When running the install script, you will be asked for the location of
the prefix directory, the destination directory for your J.T.W. files, and whether or not to
install Davin’s Full Version of GNU Emacs.

4. If you have the program yes installed (as will be the case if you are running GNU/Linux or
Cygwin1) then you can run the installer module with all of the default settings by issuing
the following command. Note that the default setting is not to install Davin’s Full Version
of GNU Emacs. Use the following command under Windows:

yes | bash install ENTER

or the following command user GNU/Linux:

su yes | bash install ENTER exit

1Visit the following Website: www.cygwin.com for the program setup.exe which will install this program (and

others too).

http://www.cygwin.com

16 CHAPTER 2. THE J.T.W. LANGUAGE

Installing GNU Emacs on GNU/Linux systems

In GNU/Linux systems that derive from Debian,2 all you need to do is to type the following
command from your Bash prompt:

su

apt-get install emacs25 ENTER

exit ENTER

To execute this command, you will be prompted for the root password.

Installing bash, grep, make and sed

To run J.T.W. files you need to have bash, grep, make and sed installed on your system, which
you can install yourself if you are using cygwin. If you are running a GNU/Linux system these
commands will already be installed. If you are using Cygwin under M.S. Windows then you can
download the executables using the already-mentioned command setup.exe

Under GNU/Linux systems that derive from Debian, execute the following command

su ENTER

apt-get install package ENTER

where package is a name of the package that you want to install. Note that you will be
prompted for the root password.

2.3.1 Uninstalling J.T.W.

To uninstall J.T.W., you need to issue following command. Note that you will be prompted for
the root password:

su ENTER

bash uninstall username ENTER

exit ENTER

Assuming you have untarred the tarball preprocessors-YYYYmmdd-HHMMSS.tar.gz to the
following folder: ~/preprocessors, then you need to issue the following command to remove the
files: rm -fr ~/preprocessors.

2.4 Introducing J.T.W. keywords

In §2.1 I explained how the J.T.W. keywords begin . . . end replaces { ... }, and how the

J.T.W. keywords beginMain . . . endMain replaces public static void main (String[]

args) { ... }. This section explains the rest of the J.T.W. keywords.

1. The J.T.W. keyword var makes it clearer whenever a new local variable is introduced. For
example: The following J.T.W. code: var int x = 123; compiles to the following Java code:
int x = 123;.

2. The J.T.W. keyword classVar is used to denote class variables, also known in Java as
static variables.

2See the following link: www.debian.org/misc/children-distros for a list of GNU/Linux distributions which

derive from Debian. The list includes Ubuntu (see ubuntu.com) and Lubuntu (see lubuntu.net) the flavour of

GNU/Linux that I choose to use.

http://www.debian.org/misc/children-distros
http://ubuntu.com
http://lubuntu.net

2.5. YOUR FIRST PROGRAM 17

3. The J.T.W. keyword property is used to denote propertys, also known as instance vari-
ables.

4. The J.T.W. keyword function is used to denote class methods, those which in Java have
the static keyword.

5. The J.T.W. keyword constructor is used to denote constructors.

6. The J.T.W. keyword method is used to denote methods, those which in Java lack the
static keyword.

7. The J.T.W. keyword then is used to make if statements more clear. For example: if (abc)

then begin ... end in J.T.W. compiles to if (abc) { ... } in Java.

8. The elseif keyword for replacing else if.

9. The J.T.W. keywords and and or serve to replace Java’s cumbersome && and || for, respec-
tively logical and and logical or.

2.5 Your first program

Traditionally the first program you write in any language is a program that does nothing but
prints out “Hello, world!”. Here is such a program in J.T.W. which belongs in a file called
MyFirstProgram.jtw:

001 class MyFirstProgram

002 begin

003 beginMain

004 System.out.println("Hello, world!");

005 endMain

006 end

Here is the same program as the above, after being compiled to Java. This code will reside in a
file called MyFirstProgram.java.

001 class MyFirstProgram

002 {
003 public static void main (String[] args)

004 {
005 System.out.println("Hello, world!");

006 }
007 }

2.5.1 Building J.T.W. into Java and running class files

To build a single class file, you simply execute the command from your ~/jtw-tutorials folder:

make build MyFirstProgram.run

which will build, in order, MyFirstProgram.java, MyFirstProgram.class before running

java -enableassertions MyFirstProgram

The purpose of the “build” target is to call the “clean” target which deletes all *.java and
*.class files before building the target file. If you don’t do this then java might run an old
version of *.class files despite earlier errors in the build process. This is because the use of pipes
in building and executing *.class files hides the return values of the programs javac and java.
The build target is also useful also when compiling groups of *.jtw files.

18 CHAPTER 2. THE J.T.W. LANGUAGE

2.6 J.T.W. Tutorials

These tutorials are also available on-line on my Website:

davin.50webs.com/J.T.W

The answers to the tutorials can be found at my Website above and are protected by passwords.
For the passwords to the answers to the questions, see §2.17. To enter the passwords,scroll down
to Section 3: Answers to the tutorials. and click on the hyperlink there.

• §2.6.1 Introducing functions,parameters,arguments,strings,System.out.println and com-
ments to give you enough basic J.T.W. to get you started.

• §2.6.2 Tutorial 2: Introduction to programming in J.T.W. Introducing chars,the
difference between == and =,booleans,the if (...) then ... elseif (...) ... elseif
(...) ... else ... construct,local variables,ints,the superfor construct and teaching
you how to call existing methods of the string class but not teaching you how to write your
own methods until Tutorial 9.

• §2.6.3 Tutorial 3: superfor loops and for loops. Introducing System.out.print
for printing without a trailing carriage return,revising loops that use the superfor con-
struct,introducing doubles and revising ints and chars.

• §2.6.4 Tutorial 4: Four looping constructs. Other types of loops such as while and
do . . . while,and revising if (. . .) then . . . elseif (. . .) . . . elseif (. . .) . . . else . . .
statements and for loops. Learning what is the best of these three looping constructs.

• §2.6.5 Tutorial 5: A beer drinking song. Using all of the J.T.W. constructs that you
have learnt so far to rewrite a song to be more general-purpose.

• §2.6.6 Tutorial 6: Class variables. Introducing class variables which are different from
variables that are local to functions.

• §2.6.7 Tutorial 7: Non-Object arrays. Introducing non-object arrays that are either single
dimensional or multi dimensional using two different initialisation syntaxes and introducing
function name overloading.

• §2.6.8 Tutorial 8: Accessing functions and class variables from another class.
Learning how to access functions and class variables from another class and introducing
boolean arrays.

• §2.6.9 Tutorial 9: Mapping:

1. class variables → instance variables (which are better known as propertys),and

2. functions → methods

to allow for more than one object per class. This gives you the full power of O.O.P. (Object
Oriented Programming) classes. Introducing getter methods and references for access-
ing objects. Introducing the null keyword for representing no object and introducing the
toString method,while explaining why this method is better than any other method or
property for debugging your code.

• §2.6.10 Tutorial 10: Object arrays. Introducing object arrays that are either single dimen-
sional or multi dimensional. Revising two different initialization syntaxes from Tutorial 7
on non-object arrays.

• §2.6.11 Tutorial 11: References to another class. When classes have references to
objects of other classes in their propertys then you can set up relationships between different
classes.

http://davin.50webs.com/J.T.W

2.6. J.T.W. TUTORIALS 19

• §2.6.12 Tutorial 12: Overloading methods. Overloading methods,swapping the prop-
ertys of two objects,and converting methods to functions and vice-versa.

• §2.6.13 Tutorial 13: More about references. More questions about references.

• §2.6.14 Tutorial 14: Linked lists. When a class has a reference to itself as a property
then you can build linked lists out of objects of this class. WARNING: Linked lists are
tricky for novice programmers to grasp.

• §2.6.15, Tutorial 15: Introducing inheritance. Introducing polymorphism, getter and
setter methods, the instanceof keyword for run-time type enquiry, the Object class and
explaining in more depth why the toString method is useful for debugging.

• §2.6.16 Tutorial 16: Advanced inheritance. Showing you how inheritance can be used
to reduce the amount of duplication of code.

• §2.6.17 Tutorial 17: Arrays, inheritance and polymorphism. Also teaches why in
most cases it is better to use polymorphism rather than run-time type inquiry.

2.6.1 Tutorial 1

Question 1.1: Some code to get you started. First, please visit §2.2.2 for the programs that
you need to have installed before you can do any coding in J.T.W. You should then download a
tarball (also known as a compressed archive file):

davinpearson.com/binaries/preprocessor-YYYYmmdd-HHMMSS.tar.gz

where YYYY is the year the file was last modified, mm is the month the file was last modified and
dd is the day the file was modified and similarly for HH, MM and SS, containing the code you need
to get started. Then unzip the tarball and change directory to ~/preprocessors and issue the
following command: bash install <username> . Note that you will need to be logged in as root
to execute this command. If you want to run the installer module with all of the default settings,
you need to execute the following command:

yes | bash install www

If you are using M.S. Windows and your HOME variable is unset, then you will need to set it
to a sensible value. Examples of sensible values for your HOME variable include, c:\ or c:\home
or d:\home if your d drive is a hard drive. To set the HOME variable in windows, press Windows
E and right click on My Computer (Windows XP) or This Computer (Windows 10) and click
on Properties, then click on Advanced system settings, then click on Advanced, then click on New
environment variable to set the HOME variable.

When you run the install script using the command bash install <username> and you
will be prompted for the location of prefix directory and the location of the place to keep your
*.jtw files. You will also be asked if you want to install just Davin’s jtw-mode or Davin’s Full
Version of GNU Emacs. The advantage of installing Davin’s Full Version of GNU Emacs is that
it has been extensively modified for optimum editing of code in many different languages. To
install J.T.W. using the default settings, you need to issue the following command: yes | bash

configure, assuming you have the command yes installed as will be the case if you are using
GNU/Linux or Cygwin3. Note that under the default settings, Davin’s Full Version of GNU Emacs
is not extracted.
Question 1.2: Your first J.T.W. program. Traditionally in computer science the first pro-
gram that you write in any programming language is a program that does nothing else but prints
out "Hello,World". The following code does just that. In order to compile and run the following
program you will need use the copy feature of your web browser and the paste feature of your text

3www.cygwin.com

http://davinpearson.com/binaries/preprocessor-YYYYmmdd-HHMMSS.tar.gz
http://www.cygwin.com

20 CHAPTER 2. THE J.T.W. LANGUAGE

editor (which I hope for your sake is Davin’s version of GNU Emacs or GNU Emacs with Davin’s
jtw-mode) to bring the following program code out of the J.T.W. web page and into your text
editor for editing purposes. Once you have copied and pasted your code you can then compile
and run it. Every other question in these tutorial requires you to be familiar with the copy and
paste operation unless you are a masochist and like to type in your source code by hand. In the
following code, note the use of the class construct. In J.T.W. and Java, every piece of program
code that does some real computational work resides in a class of some description.

001 class MyFirstProgram

002 begin

003 beginMain

004 System.out.println("Hello,World!");

005 endMain

006 end

The code for any class X in these tutorials should reside in a file called X.jtw. Therefore
the above code should be put into a file called MyFirstProgram.jtw. If two classes X and Y use

each other and X contains the main function then it is convenient to place them both in a file
called X.jtw. To build and run some code, you first need to be in the /jtw-tutorials folder
and secondly you need to issue the following shell command: make build X.run where X is the
name of the class that you want to run, so it is

make build MyFirstProgram.run

in this case. For all questions that follow this one, it will be assumed that you know how
to do this. See §2.16.6 for more information about how to build collections of classes and entire
packages.
Question 1.3: Multiple calls to System.out.println. Change the above code from printing
the string "Hello,World!" to printing out the following messages. Please note that it will be
easiest to use multiple calls to System.out.println() which sends text to the screen for the
purpose of viewing.

Hello, Anne! How are you doing?

Hello, Brian! How are you doing?

Hello, Clare! How are you doing?

Question 1.4: Functions, parameters and arguments. A function is a piece of code that
does some computational work and optionally returns a value. Notice how the hello function
below takes a value of whose name to say hello to. This value who is called a parameter. The values
passed to the parameter by the call to the function is called an argument. For the purposes of
this question, add two more calls to the hello function in the main function to get the same
result as the code for the previous question. The keyword void indicates that this function does
not return a value. See the next question for a function that does return a value.

001 class MySecondProgram

002 begin

003 function void hello (String who)

004 begin

005 System.out.println("Hello " + who + ",how are you doing?");

006 end

007 beginMain

008 hello("Anne");

009 endMain

010 end

2.6. J.T.W. TUTORIALS 21

Question 1.5: Return values. Notice how the following hello function returns a string rather
than printing out the string. Add two more calls to the hello function below to get the same
result as for Question 1.3.

001 class MyThirdProgram

002 begin

003 function String hello (String who)

004 begin

005 return "Hello " + who + ",how are you doing?" ;

006 end

007 beginMain

008 System.out.println(hello("Anne"));

009 endMain

010 end

Question 1.6: Ignoring return values. In J.T.W. and Java, it is not necessary to use a value
that is returned by a function. Sometimes this wastes computational resources since the value
that is computed by the function is not used but other times when the function whose value is
to be ignored does some additional work by setting the value(s) of some variable(s) to different
values then the function call is not a waste of resources. To ignore the value returned by the
hello function, simply call the function without using the value like so: hello("Ignored");

For the purposes of this question, try calling the hello function without using the return value
by adding a line of code to the main function.
Question 1.7: Comments. Study the following code. Note the use of dark green and red
comments. Comments are used to disable code for debugging purposes and also to help explain
how a program works. The most useful comment in J.T.W. and Java is /** until the first */.
This type of comment is harvested by Javadoc to produce documentation on how a class works.
The second and third most useful comments are (respectively) // until the end of the line and /*

until the first */. The third type of comment is not very useful because in J.T.W and Java you
are not allowed to have one comment inside another, so if you use this type of comment you will
constantly need to search for and remove */ closing comments. In the tutorials that follow you
will see many comments, although mainly the first and second types of comments.

001 /** This comment is harvested by Javadoc

002 to document the MyFourthProgram class */

003 class MyFourthProgram

004 begin // I am a single line comment

005 /* I am

006 a multi-line

007 comment */

008 /** This comment is harvested by Javadoc

009 to document the hello function */

010 function String hello (String who)

011 begin

012 return "Hello " + who + ",how are you doing?" ;

013 end

014 /** This comment is harvested by Javadoc

015 to document the main function */

016 beginMain

017 System.out.println(hello("Anne"));

018 endMain

019 end

22 CHAPTER 2. THE J.T.W. LANGUAGE

2.6.2 Tutorial 2

Question 2.1: The following code returns whether or not the current parameter ch is a vowel. The
parameter ch is of type char which is used to hold the components of a string. That is to say, strings
are built out of sequences of chars. Also note the use of the Character.toUpperCase function
to convert chars into uppercase chars so that the code works equally well for isVowel(’a’) and

isVowel(’A’). Study, compile and run the following code. Does it print what you expected it
to? If not, then fix the bug.

001 class Scrabble

002 begin

003 function boolean isVowel (char ch)

004 begin

005 ch = Character.toUpperCase(ch);

006 if ((ch == ’A’) or (ch == ’E’) or (ch == ’I’) or (ch == ’O’) or (ch == ’U’))

007 then return true;

008 else return false;

009 end

010 beginMain

011 System.out.println(isVowel(’a’));

012 endMain

013 end

In the above code, note the difference between a = b example: ch = Character.toUpperCase(ch)
and a == b example: ch == ’A’ . The first is an assignment that sets a to be whatever the value
of b is, while the second is a question that says whether or not the two arguments a and b are
equal.
Note that later on in this tutorial you will learn that this is not the way to compare two strings.
Also note the use of the boolean return type. This means that the return value is either true or
false.
Question 2.2: By copying the pattern established by the above code, write a function isConsonant

which returns whether or not the given argument is not a vowel. The easiest way to do this is
to write isVowel(ch) == false which means: “ch is not a vowel”. You will also need to ensure
that the parameter ch is greater than or equal to ’A’ and less than or equal to ’Z’ . Then test

your code by calling isConsonant from the main function.
Question 2.3: By copying the pattern established in the following code:

001 function int countVowels (String word)

002 begin

003 var int result = 0;

004 superfor (var int i=0 to word.length()-1;)

005 begin

006 var char ch = word.charAt(i);

007 if (isVowel(ch)) then result = result + 1;

008 end

009 return result;

010 end

write a function that counts the number of consonants in a word. Note the use of the var keyword
for defining variables that are local to functions. Local variables are very much like parameters
that were introduced in the previous tutorial. In the above code, note the use of word.charAt(i)
and word.length(). The first of these results the character at location in the string word given by
the value of i and the second of these returns the length of the string word. In Tutorial 11 you will

2.6. J.T.W. TUTORIALS 23

learn that these are called methods which are different from functions that currently know how to
write. Until we get to this tutorial and we are ready to teach you how to write your own methods,
you will only call existing methods such as the above methods of the String class. Then test
your code by calling it from the main function.
Question 2.4: Write a method simpleScoreWord that calls countVowels and countConsonants

to give a Simple Score of a word. The Simple Score of a word is the number of vowels in the word
plus the number of consonants in the word times ten. Then test your code by calling it from the
main function.
Question 2.5: Write a method advancedScoreLetter that returns the Advanced Score of a
letter. Here is a breakdown of the distribution of letters for the purpose of the calculation of the
Advanced Scores.

• 2 blank tiles (scoring 0 points)

• 1 point: E 12 tiles, A 9 tiles, I 9 tiles, O 8 tiles, N 6 tiles, R 6 tiles, T 6 tiles, L 4 tiles, S 4
tiles, U 4 tiles

• 2 points: D 4 tiles, G 3 tiles

• 3 points: B 2 tiles, C 2 tiles, M 2 tiles, P 2 tiles

• 4 points: F 2 tiles, H 2 tiles, V 2 tiles, W 2 tiles, Y 2 tiles

• 5 points: K 1 tiles

• 8 points: J 1 tiles, X 1 tiles

• 10 points: Q 1 tiles, Z 1 tiles

Then test your code by calling it from the main function.
Question 2.6: Write a method advancedScoreWord that returns the Advanced Score of a word.
The Advanced Score of a word is the sum of the Advanced Scores of each letter in the word. If
the word is eight letters long then you should add an extra, say, 50 points to the score. Then test
your code by calling it from the main function.
Question 2.7: Comparing strings. Amend the advancedScoreWord function so that swear
words get a score of zero. For the purposes of this question you only need to think of three swear-
words to add to the code. In the interests of not offending anyone, please keep your choice of swear
words very tame. When comparing strings it is a mistake to use == which you already know is
how you compare the following types that you know of so far: booleans, chars and ints. Using ==

on strings compiles and runs but gives you the incorrect result. The correct method to compare
strings is to use the equals method of the string class like so: word.equals("bugger") which

returns true or false, depending on whether or not the string word currently holds the value
"bugger" .

Question 2.8: Change the advancedScoreWord function so it works equally well with up-
percase words and lowercase words. You will need write to call either word.toUpperCase() or
word.toLowerCase() and store the result in word.

2.6.3 Tutorial 3

Question 3.1a: For loops that count up in steps of one. Study the following code and
verify that it prints out “2 3 4 5 6 7 8 9 10” by compiling and running it. Notice that the
System.out.print() function call doesn’t print a carriage return after printing the argument
value. That is why the System.out.println() function call is needed at the end of the superfor
and for loop, to print a carriage return at the end of the line. Also note the use of the plus sign
to concatenate a string and the number to produce another string.

24 CHAPTER 2. THE J.T.W. LANGUAGE

001 beginMain

002 /* Here is the superfor loop: */

003 superfor (var int i=2 to 10) System.out.print(" " + i);

004 System.out.println();

005

006 /* Here is the ordinary for loop: */

007 for (var int i=2 i<=10; i=i+1) System.out.print(" " + i);

008 System.out.println();

009 endMain

Question 3.1b: Change the superfor loop and the ordinary for looop to print out: “5 6 7 8

9 10”.
Question 3.1c: Change the superfor loop and the ordinary for looop to print out: “234 235

236 237 238”.
Question 3.1d: Change the superfor loop and the ordinary for looop to print out: the for loop
to print out “48 49 50 ... 75 76”.
Question 3.1e: Change the for loop to print out “-5 -4 -3 -2 -1 0 1 2 3”.
Question 3.2a: For loops that count up in steps greater than one. Study the following
code and verify that it prints out “10 15 20 25 30 35 40” by compiling and running it.

001 beginMain

002 /* Here is the superfor loop: */

003 superfor (var int i=10 to 40 step 5) System.out.print(" " + i);

004 System.out.println();

005

006 /* Here is the ordinary for loop: */

007 for (var int i = 10; i<=40; i=i+5) System.out.print(" " + i);

008 System.out.println();

009 endMain

Question 3.2b: Change the for loop to print out “20 25 30 35 40”.
Question 3.2c: Change the for loop to print out “100 105 110 115 120 125”.
Question 3.2d: Change the for loop to print out “2 4 6 8 10 12 14”.
Question 3.2e: Change the for loop to print out “10 13 16 19 22 25”.
Question 3.3a: For loops that count down in steps of one. Study the following code and
verify that it prints out “10 9 8 7 6 5 4 3 2 1” by compiling and running it.

001 beginMain

002 /* Here is the superfor loop: */

003 superfor (var int i=10 downto 1) System.out.print(" " + i);

004 System.out.println();

005

006 /* Here is the ordinary for loop: */

007 for (var int i = 10; i>=1; i=i-1) System.out.print(" " + i);

008 System.out.println();

009 endMain

Question 3.3b: Change the for loop to print out “10 9 8 7 6 5 4”.
Question 3.3c: Change the for loop to print out “20 19 18 17 16 15 14 13 12”.
Question 3.3d: Change the for loop to print out “66 65 64 ... 47”.
Question 3.3e: Change the for loop to print out “3 2 1 -1 -2 -3 -4 -5 -6 -7”.
Question 3.4a: For loops that count down in steps greater than one. Study the following
code and verify that it prints out “100 90 80 70 60 50 40 30 20” by compiling and running it.

2.6. J.T.W. TUTORIALS 25

001 beginMain

002 /* Here is the superfor loop: */

003 superfor (var int i=100 downto 20 step -10) System.out.print(" " + i);

004 System.out.println();

005

006 /* Here is the ordinary for loop: */

007 for (var int i = 100; i>=20; i=i-10) System.out.print(" " + i);

008 System.out.println();

009 endMain

Question 3.4b: Change the for loop to print out “80 70 60 50 40 30 20”.
Question 3.4c: Change the for loop to print out “500 490 480 470 460”.
Question 3.4d: Change the for loop to print out “10 8 6 4 2 0”.
Question 3.4e: Change the for loop to print out “33 28 23 18 13 8 3”.
Question 3.5a: For loops that use floating point numbers to count. Study the following
code and verify that it prints out “1.1 2.2 3.3 4.4” by compiling and running it. The type
name double is short for double precision floating point. It is natural to ask: why not use single
precision floating point? The answer to this question is that double precision floating point gives
fewer compilation errors than single precision floating point does.

001 beginMain

002 /* Here is the superfor loop: */

003 superfor (var double i=1.1 to 4.41 step 1.1) System.out.print(" " + i);

004 System.out.println();

005

006 /* Here is the ordinary for loop: */

007 for (var double i = 1.1; i<=4.41; i=i-1.1) System.out.print(" " + i);

008 System.out.println();

009 endMain

Note the extension of the to part of the superfor loop and the second part of the for loop. The
number is 4.41 and this prevents round off errors in doubles from getting to the final value of 4.4.
Question 3.5b: Change the for loop to print out “0 2.2 4.4 6.6”. Note that rounding errors
may prevent you from getting this exact answer. Also note that the answer to this question is not
what you would naively expect without running the code.
Question 3.5c: Change the for loop to print out “-30 -19.9 -9.8 0.3 10.4 20.5”.
Question 3.5d: Change the for loop to print out “100 .0 96.7 93.4 90.1 86.8 83.5 80.2

76.9”.
Question 3.5e: Change the for loop to print out “-100.0 -105.5 -111.0 -116.5”.
Question 3.6a: For loops that use chars to count. Study the following code and verify that
it prints out “a b c d e f g h i j k l m n o p q r s t u v w x y z” by and running it.

001 beginMain

002 /* Here is the superfor loop: */

003 superfor (var char i = ’a’ to ’z’)

004 System.out.println();

005

006 /* Here is the ordinary for loop: */

007 for (var char i= ’a’ ; i<= ’z’ ; i=i+1) System.out.print(" " + i);

008 System.out.println();

009 endMain

26 CHAPTER 2. THE J.T.W. LANGUAGE

Question 3.6b: Change the for loop to print out “a b c d e f”.
Question 3.6c: Change the for loop to print out “z y x w v u t s r q p o n m l k j i h

g f e d c b a”.
Question 3.6d: Change the for loop to print out “p o n m l k j i h”.
Question 3.6e: Change the for loop to print out “A B C D E F G H I J K L M N O P Q R S

T U V W X Y Z”.

2.6.4 Tutorial 4

Study the following code:

class LoopTest

001 begin

002 function int powerOf2A (int n)

003 begin

004 var int counter = n;

005 var int result = 1;

006 while (counter != 0)

007 begin

008 result = 2 * result;

009 counter = counter - 1;

010 end

011 return result;

012 end

013

014 function int powerOf2B (int n)

015 begin

016 var int counter = n;

017 var int result = 1;

018 do

019 begin

020 result = 2 * result;

021 counter = counter - 1;

022 end while (counter != 0);

023 return result;

024 end

025

026 function int powerOf2C (int n)

027 begin

028 var int result = 1;

029 for (var int counter = n; counter != 0; counter = counter - 1)

030 begin

031 result = 2 * result;

032 end

033 return result;

034 end

035

036 function int powerOf2D (int n)

037 begin

038 var int result = 1;

039 superfor (var int counter = n downto 1)

040 begin

041 result = 2 * result;

042 end

2.6. J.T.W. TUTORIALS 27

043 return result;

044 end

045

046

047 /**

048 * Prints a row of stars of a given length.

049 */

050 function void printLineC (int length)

051 begin

052 for (var int i = 0; i<length; i=i+1)

053 begin

054 System.out.print("#");

055 end

056 System.out.println();

057 end

058

059 beginMain

060 // For question 4.1 add some code here...

061 endMain

062 end

Question 4.2: To the main function add some code to call the functions powerOf2A, powerOf2B,
powerOf2C and powerOf2D to verify that they all return the same result. To inspect the result you
will need to apply the System.out.println() statement to the values returned by those functions.
Question 4.3: There is a bug in the powerOf2B method because it does not behave correctly
in the case when n is zero. Put an if statement at the top of this method to make it handle the
case of zero properly.
Question 4.4: By copying the pattern of powerOf2A, powerOf2B, powerOf2C and powerOf2D,
write methods printLineA, printLineB and printLineD that work identically to the method
printLineC, except that they use while loops, do loops and superfor loops, respectively. Add

some code to the main function to test them out.
Question 4.5: Based on the previous three questions, is there a best looping construct? Or does
it depend on what the looping construct is going to be used for?

2.6.5 Tutorial 5

Question 5.1: Study the following code and then compile and run it to verify that it prints out
the lyrics to a popular beer-drinking song:

001 class BeerSong

002 begin

003 beginMain

004 System.out.println("Five bottles of beer on the wall.");

005 System.out.println("Five bottles of beer on the wall.");

006 System.out.println("If one bottle of beer should accidentally fall,");

007 System.out.println("there’d be four bottles of beer on the wall.");

008 System.out.println();

009 System.out.println("Four bottles of beer on the wall.");

010 System.out.println("Four bottles of beer on the wall.");

011 System.out.println("If one bottle of beer should accidentally fall,");

012 System.out.println("there’d be three bottles of beer on the wall.");

013 System.out.println();

014 System.out.println("Three bottles of beer on the wall.");

28 CHAPTER 2. THE J.T.W. LANGUAGE

015 System.out.println("Three bottles of beer on the wall.");

016 System.out.println("If one bottle of beer should accidentally fall,");

017 System.out.println("there’d be two bottles of beer on the wall.");

018 System.out.println();

019 System.out.println("Two bottles of beer on the wall.");

020 System.out.println("Two bottles of beer on the wall.");

021 System.out.println("If one bottle of beer should accidentally fall,");

022 System.out.println("There’d be one bottle of beer on the wall.");

023 System.out.println();

024 System.out.println("One bottle of beer on the wall.");

025 System.out.println("One bottle of beer on the wall.");

026 System.out.println("If one bottle of beer should accidentally fall,");

027 System.out.println("there’d be no bottles of beer on the wall.");

028 System.out.println();

029 endMain

030 end

Question 5.2: The following is the first attempt to make the code smaller but to keep the same
output: If you compile and run the following code you will notice that it counts up from one rather
than down from n. Change the for loop so that it runs down rather than up. For information
about how to write the for loop, please consult Tutorial 2.

001 class BeerSong

002 begin

003 function song (int n)

004 begin

005 for (var int i=1; i<=n; i=i+1)

006 begin

007 System.out.println(i + " bottles of beer on the wall");

008 System.out.println(i + " bottles of beer on the wall");

009 System.out.println("If one bottle of beer should accidentally fall,");

010 System.out.println("there’d be " + (i-1) + " bottles of beer on the wall");

011 System.out.println();

012 end

013 end

014

015 beginMain

016 song(5);

017 endMain

018 end

Question 5.3: Finish the number2string function below and add a new function call to this
function in the song function so that it print textual numbers rather than digits.

001 function String number2string (int n)

002 begin

003 assert n>=0 : n;

004 assert n<=10: n;

005 if (n == 0) then return "no" ;

006 if (n == 1) then return "one" ;

007 if (n == 2) then return "two" ;

008 /* rest of code goes here */

2.6. J.T.W. TUTORIALS 29

009 if (n == 9) then return "nine" ;

010 if (n == 10) then return "ten" ;

011 assert false;

012 end

Question 5.4: Add a new function String capitalize (int n) that capitalizes the first word in
a String and call this function from the song function so that the first words in each sentence
are capitalized. You should find the function Character.toUpperCase and the methods String
and String helpful for writing this function. See the String class of the java.lang package in
the following link:

docs.oracle.com/javase/1.5.0/docs/api

for more details.
Question 5.5: Add new function call String plural (int n) that returns the string "s" if

n is not equal to 1 and the empty string "" otherwise. Then call this function from the song

function so that the phrase "bottle" is pluralized when it should be.
Question 5.6: Write a function called number2string2 that can handle values up to but not
including 100 . Note that you will need multiple if statements to achive this. Note that if n is a
number then the following expressions are useful:

• var int temp1 = n / 10 % 10 results in temp1 holding the tens digit of n and is zero in
the case that n<10.

• var int temp2 = n % 10 results in temp2 holding the ones digit of n.

Also make it print out "one hundred or more" in the case that n>=100

Question 5.7: Change the song function so that the following function call: song(5, "rum");

in the main function results in the following printout:

Five bottles of rum on the wall.

...

there’d be no bottles of rum on the wall.

Question 5.8: Once all the code is working, add the following line to the main function:

song(100, "gin"); so that it prints out the following:

One hundred bottles of gin on the wall.

...

there’d be zero bottles of gin on the wall.

Question 5.9 Write a new function number2string3 that works like number2string2 and
number2string except that it handles numbers up to 999 . Internally number2string3 should
call number2string2. You might find the following function useful:

001 function String textand (String a, String b)

002 begin

003 if (a.equals("") or b.equals("")) then return a + b;

004 else return a + " and " + b;

005 end

http://docs.oracle.com/javase/1.5.0/docs/api

30 CHAPTER 2. THE J.T.W. LANGUAGE

Question 5.10 † Tricky Write a new function number2string4 that works like number2string3
execpt that it handles numbers up to nine hundred and ninety-nine million nine hundred and
ninety-nine thousand nine hundred and ninety-nine, i.e. 999, 999, 999. The function number2string4

should internally call number2string3 like so:

• var String ones = number2string3(n % 1000);

• var String thousands = number2string3(n / 1000 % 1000);

• var String millions = number2string3(n / 1000 / 1000 % 1000);

Note that the variables above will have values from 0 to 999 inclusive.

2.6.6 Tutorial 6

Question 6.1: Study, compile and run the following code. Note the use of the class variable
myMoney. A class variable is different from a variable that is local to a function because the
lifetime of the class variable is for the duration that the program is run, whereas the lifetime of
a local variable is for the duration of the function call. In the code that follows, the variable
myMoney is used to store a numerical value, for how much money you have.

001 class Money

002 begin

003 /** Property myMoney stores money value in dollars */

004 classVar int myMoney;

005

006 function void spend (String item, int value)

007 begin

008 myMoney = myMoney - value;

009 System.out.println("*** spent $" +

010 value +

011 " on " + item +

012 ",leaving you with $" + myMoney);

013 end

014 end

015 beginMain

016 myMoney = 100 ;

017 spend("aquarium" ,50);

018 spend("shoes" ,100);

019 spend("lipstick" ,20);

020 endMain

021 end

Question 6.2: Change the myMoney class variable so that it is a double (short for double-
precision floating point) rather than an int. You will need to add a new function money2string

that converts double values into strings. For example the floating point number 1.2345 should
be printed out as $1.23. If x is a double then the following expression converts x from a double
into a number of dollars (int)x and the following expression converts x into a number of cents
(int)(money * 100) - 100 * dollars. Note that you will need to make it so that $1.03 prints
out as this value.
Question 6.3: Add an if statement to the spend function so that it uses System.out.println()
to print out an error message if the person does not have enough funds in their bank account to
pay for the item parameter.

2.6. J.T.W. TUTORIALS 31

Question 6.4: Add a new class variable double governmentsMoney and make it so that 12.5goes
to the government in the form of G.S.T. (¡u¿G¡/u¿oods and ¡u¿S¡/u¿ervices ¡u¿T¡/u¿ax a value-
added tax)
Question 6.5: Add a new class variable numBattleships that records how many batteships are
owned by the government. Write a function buyBattleShips that causes the government to buy
as many battleships as it can afford. Make it so that the buyBattleShips function prints out
how many battleships were purchased. Let the cost of each battleship be one million dollars and
store this value in a variable called costOfShip. Please note that if the government’s money is
less the one million dollars then no battleships will be purchased.
Question 6.6: Set the initial value for governmentsMoney to be two millions dollars, then call
the buyBattleShips function and verify that two battleships were purchased.

2.6.7 Tutorial 7

This tutorial teaches you how to create single dimensional and multi-dimensional arrays of non-
objects. The non-object types in Java are those which aren’t declared inside a class, so it includes
the following types: boolean, char, int, float and double. A helpful convention in Java is that the
non-object types start with a lowercase letter, while object types start with an uppercase letter,
such as for example the String class as an example of an object type. In addition to this, two
different array initialization syntaxes are presented.

Single dimensional arrays

Question 7.1: Here is an example of a convenient one dimensional array initialization syntax.
Study, compile and run the following code. The code int[] should be read out loud as int array
indicating that the variable a is an int array, also known as an array of ints. Note that the first
value of the for loop below is zero. This is because in J.T.W. and Java, the first index of an array
is zero not one. This convention harks back to the old days of the C Programming Language and
is used because it is more efficient in the low level of machine language than counting arrays from
one. Also note that parenthesis are used to delimit arrays. I use this practice because this is the
only place in Java where a semicolon follows a closing parenthesis. If you don’t know what I am
talking about, simply ignore that remark!

001 var int[] a = { 1,2,3 };
002 for (var int i=0; i<3; i=i+1)

003 begin

004 System.out.println("a[" + i + "]=" + a[i]);

005 end

Due to a design oversight by the creators of Java you cannot use this syntax to re-initialize an
array like so:

a = { 4,5,6 }; // Compilation error

Luckily there is a way array around this oversight and that is to use a design pattern where you
introduce a temporary variable like so:

001 var int[] temp = { 4,5,6 };
002 a = temp; // Array "a" now holds 4 5 6

Later you will learn why this design pattern is useful for re-initializing multi-dimensional arrays.
Question 7.2: Write a function print that takes an int array argument and prints out the
array. You will need to use the length property of the array parameter so your function works

32 CHAPTER 2. THE J.T.W. LANGUAGE

with arbitrary sized arrays. Change the main function to what follows so that it contains a
call to the print function.

001 var int[] a = { 1,2,3 };
002 print(a);

Question 7.3: Write a function with same name as the previous print function, except that
this one should take an argument that is a double[], also known as a double array. Two functions
with the same name in the same class is allowed in Java and the practice of using has a special
name that is: function name overloading. Overloading is only allowed when the two functions
with the same name have different parameters. When you call an overloaded function J.T.W.
and Java looks at the number and types of the arguments a determines from this which of the
overloaded functions to call. Change the main function to what follows so that it initializes
an array of double-precision floating point variables and then calls the second print function.

001 var double[] b = { 1.1,2.2,3.3 };
002 print(b);

Here is an example of a second initialisation syntax. For this particular example it is better to
use the simpler, earlier initialisation syntax, but when the size of the array to be created is to be
determined at run-time, then the second syntax should used. The next question will show you an
example of this.

001 beginMain

002 var int[] a = new int[3];

003 // at this point the array is all zeroes

004 for (var int i=0; i<3; i=i+1)

005 begin

006 a[i] = i;

007 end

008 print(a);

009 endMain

Question 7.4: Write a function create takes one int argument, the size of the array to create
and returns an int array of that size. Make it so the ith element of the array is initialized to i.
Call this function from the main function like so:

001 beginMain

002 var int[] a = create(3);

003 print(a);

004 endMain

Question 7.5: Write a function create2 takes one int argument, the size of the array to create
and returns a double array of that size. Make it so the ith element of the array is initialized to
i.i, given that i<10. Why is it not possible to overload that create function? Try it and see
what the compiler says. Call create2 from the main function like so:

001 beginMain

002 var double[] a = create2(3);

003 print(a);

004 endMain

2.6. J.T.W. TUTORIALS 33

Question 7.6: Write a function doubler that takes an int array x and returns a new int array
result that is twice as big as x. Copy x into result before you return it. The extra elements in
the result should all be zero.
Question 7.7: Change the doubler function so that every zero in the array result is set to
the value 13.

Two dimensional arrays

Question 7.8: Here is an example of a convenient two dimensional array initialization syntax.
Study, compile and run the following code. The code int[][] should be read out loud as int array
array indicating the variable a is an int array array, also known as a two-dimensional array of
ints.

001 beginMain

002 var int[][] a = { { 1,2,3 } { 4,5 } { 6 } }
003

004 for (var int y=0; y<a.length; y=y+1)

005 begin

006 for (var int x=0; x<a[y].length; x=x+1)

007 begin

008 System.out.print(" " + a[y][x]);

009 end

010 System.out.println();

011 end

012 endMain

Question 7.9: By copying the pattern of the code above, do some more overloading of the print

function by writing two new print functions, one taking a two-dimensional array of ints, the

other taken a two-dimensional array of doubles. The call both of these functions from the main
function.
Note that if x is a two-dimensional array of ints, then x[i] is a one dimensional array of ints for

each in the range 0 ... x.length-1. Note that in the above code, a[0] is an array of three
ints, a[1] is an array of two ints and a[2] is an array of one int. The reason these sub-arrays
are all of different sizes is to save your computer’s precious memory. For example you can have
one sub-array much longer than all of the others without needing to allocate a whole bunch of
memory that will go unused. Since a[0] is an int array, you would naively expect it to be able to
be re-initialized like so:

001 a[0] = { 4,5,6,7};

so that after this code a[0] holds the four element long array 4,5,6 and 7. But as mentioned
above in Section §7.1, this doesn’t work because of a design oversight by the creators of Java.
Luckily as mentioned above there is a way around this oversight and that is to use a temporary
variable like so:

001 var int[] temp = { 4,5,6,7};
002 a[0] = temp; // Array "a[0]" now holds 4 5 6 7

Like with one dimensional arrays, there is a second initialisation syntax for two-dimensional arrays
and here it is. Unlike the above code the sub-arrays a[0], a[1] and a[2] are all of equal size,
namely three.

34 CHAPTER 2. THE J.T.W. LANGUAGE

001 var int[][] a = new int[3][3];

002 a[0][0] = 1; a[1][0] = 2; a[2][0] = 3;

003 a[0][1] = 4; a[1][1] = 5;

004 a[0][2] = 6;

Question 7.10: Write a function create3 and create4 that takes on int argument size and
returns a two dimensional array of ints or doubles, respectively. Make is so that if a is the name
of the returned array, then a[y][x] is set to the value of x+y.

Three dimensional arrays

Question 7.11: Using the knowledge you have gained so far about arrays, create, initialize and
print a three dimensional array of ints.

2.6.8 Tutorial 8

Question 8.1: Study, compile and run the following code which resides in a file called Box.jtw.
Notice the use of System.out.print() to print without a trailing newline and System.out.println()
to print with a trailing newline. The ln part tells you this.

001 class Box

002 begin

003 function void square (int n)

004 begin

005 for (var int y=0; y<n; y=y+1)

006 begin

007 for (var int x=0; x<n; x=x+1)

008 begin

009 if ((x == 0) or (x == n-1) or (y == 0) or (y == n-1))

010 then System.out.print("#");

011 else System.out.print(" ");

012 end

013 System.out.println();

014 end

015 end

016 beginMain

017 square(5);

018 endMain

019 end

Notice that here is the output of the above code for different values of the n parameter:

2.6. J.T.W. TUTORIALS 35

n = 1 #
n = 2 ##

##
n = 3 ###

#
###

n = 4 ####
#
#
####

n = 5 #####
#
#
#
#####

Question 8.2: By copying the pattern established in the above code, write a new function
square2 that generates the following output. Note that you will need to remove some of the or
clauses in the square method above to get the following output:

n = 1 #
n = 2 ##

##
n = 3 ###

###
n = 4 ####

####
n = 5 #####

#####

Question 8.3: By copying the pattern established in the above code, write a now function
square3 that generates the following output:

n = 1 #
n = 2 ##

##
n = 3 # #

#
#

n = 4 # #
#
#
#

n = 5 # #
#
#
#
#

36 CHAPTER 2. THE J.T.W. LANGUAGE

Question 8.4: Study, compile and run the following code which resides in a file called Box.java:

001 class Box

002 begin

003 function void x (int n)

004 begin

005 for (var int y=0; y<n; y=y+1)

006 begin

007 for (var int x=0; x<n; x=x+1)

008 begin

009 if ((x == y) or (x == n-1-y)) then System.out.print("#");

010 else System.out.print(" ");

011 end

012 System.out.println();

013 end

014 end

015 beginMain

016 x(5);

017 end

018 end

Notice that here is the output of the above code for different values of the n parameter:

n = 1 #
n = 2 ##

##
n = 3 # #

#
#

n = 4 # #
##
##

#
n = 5 # #

#
#

#
#

Question 8.5: By copying the pattern established in the above code, write a now function x2

that generates the following output. Note that you will need to remove one of the or clauses in
the x method above to get the following output:

2.6. J.T.W. TUTORIALS 37

n = 1 #
n = 2 #

#
n = 3 #

#
#

n = 4 #
#

#
#

n = 5 #
#

#
#

#

Question 8.6: By copying the pattern established in the above code, write a now function x3

that generates the following output. Note that you will need to remove one of the or clauses in
the x method above to get the following output:

n = 1 #
n = 2 #

#
n = 3 #

#
#

n = 4 #
#

#
#

n = 5 #
#

#
#

#

Question 8.7: Study, compile and run the following code which resides in a file called Box.java:

001 class Box

002 begin

003 function void triangle (int n)

004 begin

005 for (var int y=0; y<n; y=y+1)

006 begin

007 for (var int x=0; x<n; x=x+1)

008 begin

009 if (x<y)

010 then System.out.print("#");

011 else System.out.print(" ");

012 end

013 System.out.println();

014 end

015 end

016 beginMain

017 triangle(5);

38 CHAPTER 2. THE J.T.W. LANGUAGE

018 endMain

019 end

Notice that here is the output of the above code for different values of the n parameter:

n = 1 #
n = 2 #

##
n = 3 #

##
###

n = 4 #
##
###
####

n = 5 #
##
###
####
#####

Question 8.8: By copying the pattern established in the above code, write a now function
triangle2 that generates the following output. Note that you will need to change the if clause in
the triangle method above to get the following output:

n = 1 #
n = 2 ##

#
n = 3 ###

##
#

n = 4 ####
###
##
#

n = 5 #####
####
###
##
#

Question 8.9: Write a now function called box that generates the following output. Note that
you will need to modify the triangle method above to get the following output:

2.6. J.T.W. TUTORIALS 39

n = 1 #
n = 2 ##

##
n = 3 ###

###
###

n = 4 ####
####
####
####

n = 5 #####
#####
#####
#####
#####

Question 8.10: Add the following code to Box.java:

001 class Grid

002 begin

003 /** The dimensions of the array named: array. */

004 classVar int size = 20;

005

006 /* NOTE: the array below is a two-dimensional array */

007 classVar boolean[][] array = new boolean[SIZE][SIZE];

008

009 function void set (int x, int y, boolean v)

010 begin

011 if (x>=0 and x<size and y>=0 and y<size) then

012 begin

013 array[x][y] = v;

014 end

015 end

016

017 function void print (int size)

018 begin

019 for (var int y=0; y<size; y=y+1)

020 begin

021 for (var int x=0; x<size; x=x+1)

022 begin

023 if (array[x][y])

024 then System.out.print("#");

025 else System.out.print(" ");

026 end

027 System.out.println();

028 end

029 System.out.println(); // prints an empty line between shapes

030 end

031 end

Question 8.11: The following question will guide you through the process of making the drawing
algorithm more powerful. Instead of printing the shapes directly to the screen, they will be stored
in an array to be printed out only when the array has been completely set. You don’t need to
know a great deal about arrays to answer the remaining questions of this section as the array

40 CHAPTER 2. THE J.T.W. LANGUAGE

code has been written for you in the Grid class above. For every call to System.out.println()
in Box.java, replace it with a call to the set method of the Grid class. Note that the third
parameter in the set method is of type boolean, that is to say it can be either true or false. To
call a function of another class you need to prefix the name of the class like so: Grid.set(/*
argument values */). Finally at the end of all of the functions in the Box class except for the

main function you will need to call the print(int) method of the Grid class to actually
print out the array.
Question 8.12: Re-initialize the boolean array array named array from the main function
of the Box class. HINT: to access a class variable from another class, you need to prefix it
with the name of its class name, in this case it is Grid. Re-initialize the array variable to a
two-dimensional array of dimensions 100 x 100. Also set the size variable to 100 so that the
functions of the Grid class still work.

2.6.9 Tutorial 9

Elementary classes: using a single class for everything

For the purpose of the text that follows, O.O.P. stands for Object Oriented Programming.
Question 9.1: Study, compile and run the following code:

// BEGIN FILE: jtw-tutorials/Person-1.jtw.m4

001 aclassaPersonDriver1aa
002 abeginaa

003 a aclassVaraStringahomersNamea=a "HomeraSimpson" ;aa

004 a aclassVaraintaaaahomersAgeaa=aa40;a//aHomer’saageainayearsaa
005 aa

006 a aclassVaraStringafredsNameaa=a "FredaFlintstone" ;aa

007 a aclassVaraintaaaafredsAgeaaa=aa45;a//aFred’saageainayearsaa
008 aa

009 a aclassVaraStringadarthsNamea=a "DarthaVader" ;aa

010 a aclassVaraintaaaadarthsAgeaa=aa55;a//aDarth’saageainayearsaa
011 aa

012 a afunctionavoida growHomer ()aa

013 a abeginaa
014 a a ahomersAgea=ahomersAgea+a1;aa

015 a aendaa
016 a afunctionavoida growFred ()aa

017 a abeginaa
018 a a afredsAgea=afredsAgea+a1;aa

019 a aendaa
020 a afunctionavoida growDarth ()aa

021 a abeginaa
022 a a adarthsAgea=adarthsAgea+a1;aa

023 a aendaa
024 aa

025 a afunctionavoida knightHomer ()aa

026 a abeginaa

027 a a ahomersNamea=a "Sira" a+ahomersName;aa

028 a aendaa
029 a afunctionavoida knightFred ()aa

030 a abeginaa

031 a a afredsNamea=a "Sira" a+afredsName;aa

032 a aendaa
033 a afunctionavoida knightDarth ()aa

034 a abeginaa

035 a a adarthsNamea=a "Sira" a+adarthsName;aa

036 a aendaa

2.6. J.T.W. TUTORIALS 41

037 aa

038 a afunctionavoida printHomer ()aa

039 a abeginaa

040 a a aSystem.out.println("Iaama" a+ahomersNamea+a ",amyaageaisa" a+ahomersAge);aa

041 a aendaa
042 a afunctionavoida printFred ()aa

043 a abeginaa

044 a a aSystem.out.println("Iaama" a+afredsNamea+a ",amyaageaisa" a+afredsAge);aa

045 a aendaa
046 a afunctionavoida printDarth ()aa

047 a abeginaa

048 a a aSystem.out.println("Iaama" a+adarthsNamea+a ",amyaageaisa" a+adarthsAge);aa

049 a aendaa
050 aa

051 a abeginMainaa
052 a a agrowHomer();aa

053 a a aknightHomer();aa

054 a a aprintHomer();aa

055 a a aprintFred();aa

056 a a aprintDarth();aa

057 a aendMainaa
058 aendaa
// END FILE: jtw-tutorials/Person-1.jtw.m4

Question 9.2: By copying the pattern established in the existing code write a some new class
variables to represent a new person called Barack Obama. Note that he was born in 1945 so at
the time of writing this manual he is 67 years old.
Question 9.3: Then write some functions to work with this new person.
Question 9.4: Finally call those functions from the main function.

Improved classes: one object per class

As your program gets large (say over 1000 lines) then it becomes no longer practical to put all of
your code in the same class. So it is natural to put each piece of related code in its own class.
Question 9.5: Study, compile and run the following code: Each of these classes can be put in
their own file. For each class X, this class can be put into a file called X.jtw. However for the
purposes of this tutorial you will probably find it easier to merge all of the classes into the same
file into a file called PersonDriver2.jtw

// BEGIN FILE: jtw-tutorials/Person-2.jtw.m4

001 aclassaHomeraa
002 abeginaa

003 a aclassVaraStringanamea=a "HomeraSimpson" ;aa

004 a aclassVaraintaaaaageaa=a40;a//aHomer’saageainayearsaa
005 aa

006 a afunctionavoida grow ()aa

007 a abeginaa
008 a a aagea=aagea+a1;aa

009 a aendaa
010 a afunctionavoida knight ()aa

011 a abeginaa

012 a a anamea=a "Sira" a+aname;aa

013 a aendaa
014 a afunctionavoida print ()aa

015 a abeginaa

016 a a aSystem.out.println("Iaama" a+anamea+a ",amyaageaisa" a+aage);aa

017 a aendaa
018 aendaa

42 CHAPTER 2. THE J.T.W. LANGUAGE

019 aa

020 aclassaFredaa
021 abeginaa

022 a aclassVaraStringanamea=a "FredaFlintstone" ;aa

023 a aclassVaraintaaaaageaa=a45;a//aFred’saageainayearsaa
024 aa

025 a afunctionavoida grow ()aa

026 a abeginaa
027 a a aagea=aagea+a1;aa

028 a aendaa
029 a afunctionavoida knight ()aa

030 a abeginaa

031 a a anamea=a "Sira" a+aname;aa

032 a aendaa
033 a afunctionavoida print ()aa

034 a abeginaa

035 a a aSystem.out.println("Iaama" a+anamea+a ",amyaageaisa" a+aage);aa

036 a aendaa
037 aendaa
038 aa

039 aclassaDarthaa
040 abeginaa

041 a aclassVaraStringanamea=a "DarthaVader" ;aa

042 a aclassVaraintaaaaageaa=a55;a//aDarth’saageainayearsaa
043 aa

044 a afunctionavoida grow ()aa

045 a abeginaa
046 a a aagea=aagea+a1;aa

047 a aendaa
048 a afunctionavoida knight ()aa

049 a abeginaa

050 a a anamea=a "Sira" a+aname;aa

051 a aendaa
052 a afunctionavoida print ()aa

053 a abeginaa

054 a a aSystem.out.println("Iaama" a+anamea+a ",amyaageaisa" a+aage);aa

055 a aendaa
056 aendaa
057 aa

058 aclassaPersonDriver2aa
059 abeginaa
060 a abeginMainaa
061 a a aHomer.grow();aa
062 a a aFred.knight();aa
063 a a aHomer.print();aa
064 a a aFred.print();aa
065 a a aDarth.print();aa
066 a aendMainaa
067 aendaa
// END FILE: jtw-tutorials/Person-2.jtw.m4

Question 9.6: By copying the pattern established in the existing code write a new class to
represent Barack Obama.
Question 9.7: Call the functions from the main function of the driver class.

True O.O.P.: more than one object per class

To allow for more than one object per class, most if not all class variables needs to be made into
what are called instance variables (or more simply and more commonly known as properties) and

2.6. J.T.W. TUTORIALS 43

most if not all functions need to be made into what are called methods.

Question 9.8: Study, compile and run the following code:

// BEGIN FILE: jtw-tutorials/Person-3.jtw.m4

001 aclassaPersonaa
002 abeginaa
003 a a//aa

004 a a//a NOTE: atheauseaofathea ”property” akeywordahereainsteadaofathea ”classVar” akeywordaa

005 a a//aa

006 a apropertyaStringaname;a//aPerson’safullanameaa
007 a apropertyaintaaaaage;aa//aPerson’saageainayearsaa
008 aa

009 a a//aa

010 a a//a NOTE: atheauseaofathea ”method” akeywordahereainsteadaofathea ”function” akeywordaa

011 a a//aa

012 a amethodavoida grow ()aa

013 a abeginaa
014 a a aagea=aagea+a1;aa

015 a aendaa
016 aa

017 a amethodavoida knight ()aa

018 a abeginaa

019 a a anamea=a "Sira" a+aname;aa

020 a aendaa
021 aa

022 a amethodavoida print ()aa

023 a abeginaa

024 a a aSystem.out.println("Iaama" a+anamea+a ",amyaageaisa" a+aage);aa

025 a aendaa
026 aa

027 a abeginMainaa
028 aa

029 a a avaraPersonaha=anewaPerson();aa

030 a a ah.namea=a "HomeraSimpson" ;aa

031 a a ah.ageaa=a40;aa

032 aa

033 a a avaraPersonafa=anewaPerson();aa

034 a a af.namea=a "FredaFlintstone" ;aa

035 a a af.ageaa=a45;aa

036 aa

037 a a avaraPersonada=anewaPerson();aa

038 a a ad.namea=a "DarthaVader" ;aa

039 a a ad.ageaa=a55;aa

040 aa

041 a a ah.grow();aa

042 a a ah.knight();aa

043 a a ah.print();aa

044 a a af.print();aa

045 a a ad.print();aa

046 aa

047 a aendMainaa
048 aendaa
// END FILE: jtw-tutorials/Person-3.jtw.m4

In the above code, note the use of three references h, f and

Question 9.9: By copying the pattern established in the existing code add some code to the
main function add some code to create a new person for Barack Obama.

44 CHAPTER 2. THE J.T.W. LANGUAGE

A common design pattern: private properties, public constructor and public getters

A common design pattern in Java and one that I present for you in the following code is to make all
of the properties of a class effectively read-only to all client classes by making all of the properties
private and providing non-private getter methods for getting the values of the properties. It is
possible for the original class to change the values of the properties but other classes (such as
PersonTest below) are not capable of doing this, without calling a method of the original class
such the grow and knight methods of the Person class. Finally an additional thing known
as a constructor is used to ensure that objects are initialized with meaningful values for their
properties.
Question 9.10: Study, compile and run the following code:

// BEGIN FILE: jtw-tutorials/Person-4.jtw.m4

001 aclassaPersonaa
002 abeginaa
003 aa

004 a aprivateapropertyaStringaname;aa
005 a aprivateapropertyaintaaaaage;a//aAgeainayearsaa
006 aa

007 a a//aa

008 a a//a NOTE: aGetteramethodsaa

009 a a//aa

010 a apublicamethodaStringa getName ()aa

011 a abeginaa
012 a a areturnaname;aa
013 a aendaa
014 aa

015 a apublicamethodainta getAge ()aa

016 a abeginaa
017 a a areturnaage;aa
018 a aendaa
019 aa

020 a apublicaconstructoraPerson(StringaaName,aintaanAge)aa
021 a abeginaa
022 a a athis.namea=aaName;aa
023 a a athis.ageaa=aanAge;aa
024 a aendaa
025 aa

026 a apublicamethodavoida grow ()aa

027 a abeginaa
028 a a aagea=aagea+a1;aa

029 a aendaa
030 aa

031 a apublicamethodavoida knight ()aa

032 a abeginaa

033 a a anamea=a "Sira" a+aname;aa

034 a aendaa
035 aa

036 a apublicamethodavoida print ()aa

037 a abeginaa

038 a a aSystem.out.println("Iaama" a+anamea+a ",amyaageaisa" a+aage);aa

039 a aendaa
040 aendaa
041 aa

042 aclassaPersonDriver3aa
043 abeginaa
044 a abeginMainaa
045 aa

046 a a a//aa

047 a a a//a NOTE: aInatheafollowingaconstructoracallsatheaageaandanameaareasetabyatheaconstructoraa

048 a a a//aa

2.6. J.T.W. TUTORIALS 45

049 a a avaraPersonaha=anewaPerson("HomeraSimpson" ,40);aa

050 a a avaraPersonafa=anewaPerson("FredaFlintstone" ,45);aa

051 a a avaraPersonada=anewaPerson("DarthaVader" ,55);aa

052 aa

053 a a ah.grow();aa

054 a a ah.knight();aa

055 a a ah.print();aa

056 a a af.print();aa

057 a a ad.print();aa

058 aa

059 a a ah.namea=a "LukeaSkywalker" ; a a a a aaa//aERROR:anameaisaprivateaa

060 a a ah.agea=ah.agea+a1; a a a a a a a aa//aERROR:aageaisaprivateaa

061 aa

062 a a aSystem.out.println("name=" a+ah.name); a a//aERROR:anameaisaprivateaa

063 a a aSystem.out.println("age=" a+ah.age); a aaa//aERROR:aageaisaprivateaa

064 aa

065 a a aSystem.out.println("name=" a+ah.getName());a//aOK:agetteraisanon-privateaa

066 a a aSystem.out.println("age=" a+ah.getAge()); a//aOK:agetteraisanon-privateaa

067 aa

068 a aendMainaa
069 aendaa
// END FILE: jtw-tutorials/Person-4.jtw.m4

Question 9.11: By copying the pattern established in the existing code add some code to the
main function add some code to create a new person called Barack Obama.

Comparing strings

Question 9.12: Add a method unknight() which removes the "Sir " title if he has one. One
trap for young players in J.T.W. or Java is to use the operator == to compare strings like so:

001 function boolean myCompare (String a, String b)

002 begin

003 return a == b; // Works but not as expected!

004 end

It compiles without error, but doesn’t give you the result you were expecting. Instead you
need to use the equals method of the String class like so:

001 function boolean myCompare (String a, String b)

002 begin

003 return a.equals(b);

004 end

More generally, if x and y are a references to objects, then x == y returns whether or not x
and y are pointing to the same object, whereas x.equals(y) returns whether or not the contents
of the objects referred to by x and y are equal. The meaning of the word contents varies from
class to class, but in the case of strings it means that the strings contain the same data.

You will also find the String class’ substring and (toUpperCase or toLowerCase) methods
useful here too. See the String class of the java.lang package in the following link:

docs.oracle.com/javase/1.5.0/docs/api

for more details of these two methods.

http://docs.oracle.com/javase/1.5.0/docs/api

46 CHAPTER 2. THE J.T.W. LANGUAGE

The null value for references

As soon as you learn how to use references you need to know that all reference variables could
conceivably hold the value null, meaning no value. In particular when properties are themselves
references as you will discover in Tutorial 11, then those properties are initialized to null by
default. Object arrays that you will learn about in Tutorial 10 using the second of two initialization
syntaxes are also initialized to null by default.

Why the toString method is better than any other method or property for debugging

If x is a reference to a class X (including this) and if m is a method of X and p is a property
of X, and if x is currently null, then the following lines result in a NullPointerException being
thrown when executed:

001 x.p;

002 x.m();

whereas if x is null then

• System.out.println(x); and

• System.out.println("x=" + x);

prints out, respectively:

• null, and

• x=null.

If x is not null, it calls

• System.out.println(x.toString());

• System.out.println("x=" + x.toString());

so these expressions are safer to use than any other method or property in situations where x

might be null. The syntax of the toString method is as follows:

001 public method String toString ()

002 begin

003 // Code goes here...

004 end

Importantly for reasons which will be explained later the toString method must be declared
with public visibility. For other properties and methods to be used safely with null references
you need to wrap a conditional if construct around the calling of the method or property like so
for properties:

001 if (x != null)

002 then begin

003 System.out.println(x.p);

004 end

or like so for methods:

2.6. J.T.W. TUTORIALS 47

001 if (x != null)

002 then begin

003 System.out.println(x.m());

004 end

Therefore the toString method is more convenient than any other method or property. Note
that its use is without the explicit call to the toString method and only used with a variable
name, including this for the current class. Most of the time the this keyword is optional which
is why novices don’t bother to learn it, but in the case of the toString method it is essential, as
can be seen in the following example code:

001 System.out.println("x.toString()=" + x);

002 System.out.println("this.toString()=" + this);

Question 9.13: Change the print method above from a method that prints out to the screen
to a method called toString that returns a string.

Question 9.14: Call the toString method instead of the print methods in the main func-
tion.

2.6.10 Tutorial 10

This tutorial teaches you how to create single dimensional and multi-dimensional arrays of objects.
The object types are all types execpt for boolean, char, int, float and double. A helpful convention
in Java is that the Object types start with an uppercase letter, while non-object types start with
a lowercase letter, such as for example the String class as an example of an object type. In
addition to this, two different array initialization syntaxes are presented.

Single dimensional arrays

Question 10.1: Here is an example of a convenient one dimensional array initialization syntax.
Study, compile and run the following code. The code Person[] should be read out loud as person
array indicating the variable a is a person array, also known as an array of persons.

001 class Person

002 begin

003 private property String name;

004

005 public constructor Person(String aName)

006 begin

007 name = aName;

008 end

009

010 public String toString ()

011 begin

012 return name;

013 end

014 end

015

016 class PersonTest

017 begin

018 beginMain

019 var Person[] a = { new Person("P # 1"), new Person("P # 2"), new Per-

son("P # 3") };

48 CHAPTER 2. THE J.T.W. LANGUAGE

020

021 for (var int i=0; i<3; i=i+1)

022 begin

023 System.out.println("a[" + i + "]=" + a[i]);

024 end

025 endMain

026 end

Due to a design oversight by the creators of Java you cannot use this syntax to re-initialize an
array like so:

001 // Compilation error

002 a = { new Person("P # 4"), new Person("P # 5"), new Person("P # 6"), new Per-

son("P # 7") };

Luckily there is a way array around this oversight and that is to use a design pattern where you
introduce a temporary variable like so:

001 // No error

002 var Person[] temp = { new Person("P # 4"), new Person("P # 5"), new Person("P # 6"), new Per-

son("P # 7") };
003 a = temp; // Array "a" now holds P # 4,P # 5,P # 6,P # 7

Later you will learn why this design pattern is useful for re-initialising multi-dimensional arrays.
Question 10.2: Write a function in the class PersonTest called print that takes a Person
array argument and prints out the array. You will need to use the length property of the array

parameter so your function works with arbitrary sized arrays. Change the main function to
what follows so that it contains a call to the print function.

001 var Person[] a = { new Person("P # 1"), new Person("P # 2"), new Person("P # 3")};
002 print(a);

Question 10.3: Write your own class called Mine similar to the Person class with a one int
parameter constructor, a private int property p and a toString method that converts p to a
string. Then write a function in the PersonTest class with same name as the previous print

function, except that this one takes a Mine[], also known as a Mine array. You might recall
from Tutorial 7 that this practice of having two functions with the same name is called function
name overloading. Change the main function to what follows so that it initializes an array of
Mine point variables and then calls the second print function.

001 var Mine[] b = { new Mine(1), new Mine(2), new Mine(3) };
002 print(b);

Here is an example of a second initialization syntax. For this particular example it is better to
use the simpler, earlier initialization syntax, but when the size of the array to be created is to be
determined at run-time, then the second syntax should used. The next question will show you an
example of this.

001 beginMain

002 var Person[] a = new Person[3];

003 // at this point the array is all nulls

2.6. J.T.W. TUTORIALS 49

004 for (var int i=0; i<3; i=i+1)

005 begin

006 a[i] = new Person("P # " + (i+1));

007 end

008 print(a);

009 endMain

Question 10.4: Write a function create takes one int argument, the size of the array to create
and returns a Person array of that size. Make it so the ith element of the array is initialized to
"P # " + i. Call this function from the main function like so:

001 beginMain

002 var Person[] a = create(3);

003 print(a);

004 endMain

Question 10.5: Write a function create2 takes one int argument, the size of the array to
create and returns a Mine array of that size. Make it so the ith element of the array’s toString
method prints out "Mine # " + i. Why is it not possible to overload that create function?

Try it and see what the compiler says. Call create2 from the main function like so:

001 beginMain

002 var Mine[] a = create2(3);

003 print(a);

004 endMain

Question 10.6: Write a function doubler that takes a Person array x and returns a new
Person array called result twice as big as x. Copy x into the result before you return it. The
extra elements in result should all be null.
Question 10.7: Change the doubler function so that every null in the array result is set to
a new Person make it so that every new Person object has a different name property.

Two dimensional arrays

Question 10.8: Here is an example of a convenient two dimensional array initialization syntax.
Study, compile and run the following code. The code Person[][] should be read out loud
as person array array indicating the variable a is a person array array, also known as a two-
dimensional array of persons.

001 beginMain

002 var Person[][] a = { { new Person("P # 1"), new Person("P # 2"), new Per-

son("P # 3") },
003 { new Person("P # 4"), new Person("P # 5") },
004 { new Person("P # 6") } };
005

006 for (var int y=0; y<a.length; y=y+1)

007 begin

008 for (var int x=0; x<a[y].length; x=x+1)

009 begin

010 System.out.print(" " + a[y][x]);

011 end

012 System.out.println();

50 CHAPTER 2. THE J.T.W. LANGUAGE

013 end

014 endMain

Question 10.9: By copying the pattern of the code above, do some more overloading of the print
function by writing two new print functions, one taking a two dimensional array of Person, the

other taken a two dimensional array of Mine. The call both of these functions from the main
function.
Since a[0] is a Person array,you would naively expect it to be able to be re-initialized like so:

001 a[0] = { new Person("P # 4"),

002 new Person("P # 5"),

003 new Person("P # 6") };

so that after this code a0 holds the four element long array Person # 4,Person # 5 and Person

6,but it does’t work owing to a design oversight by the creators of Java. Luckily as mentioned
above there is a way around this oversight and that is to use a temporary variable like so:

001 var Person[] temp = { new Person("P # 4"),

002 new Person("P # 5"),

003 new Person("P # 6") };
004 a[0] = temp; // Array "a[0]" now holds P # 4,P # 5,P # 6

Like with one dimensional arrays,there is a second initialisation syntax for two dimensional arrays
and here it is. Unlike the above code the sub-arrays a[0],a[1] and a[2] are all of equal size,namely
three.

001 var Person[][] a = new Person[3][3];

002 a[0][0] = new Person("P # 1");

003 a[0][1] = new Person("P # 2");

004 a[0][2] = new Person("P # 3");

005 a[1][0] = new Person("P # 4");

006 a[1][1] = new Person("P # 5");

007 a[1][2] = new Person("P # 6");

008 a[2][0] = new Person("P # 7");

009 a[2][1] = new Person("P # 8");

010 a[2][2] = new Person("P # 9");

Question 10.10: Write a function create3 and create4 that takes an int argument size and
returns a two dimensional array of Person or Mine, respectively. Make is so that each Person
or Mine object has its own number, using a separate counter variable int count.

Three dimensional arrays

Question 10.11: Using the knowledge you have gained so far about arrays, create, initialize and
print a three dimensional array of Person. Make it so that each Person object is given its own
number using a separate counter variable int count.

2.6.11 Tutorial 11

The following code presents example involving three classes Flea, Dog and DogOwner to rep-
resent the idea that a dog has a flea and a dog-owner has a dog. The class DogTest is the driver

2.6. J.T.W. TUTORIALS 51

class. The key concept of this tutorial is that classes can have references of objects of another
class in order to set up a relationship between the two classes.

Question 11.1 Study the following code and find the two bugs in it. Fix the bugs and then
compile and run it to verify that it prints out "p=I am a flea called Pop" .

// BEGIN FILE: jtw-tutorials/DogTest.jtw

001 aclassaFleaa
002 abegina
003 aaaapropertyaStringaname;a
004 aa

005 aaaaconstructorFlea(StringaaName)a
006 aaaabegina
007 aaaaaaaaNamea=aname;a

008 aaaaenda
009 aa

010 aaaapublicamethodaStringa toString ()a

011 aaaabegina

012 aaaaaaareturna "(Iaamaaafleaacalleda" a+anamea+a ")" ;a

013 aaaaenda
014 aenda
015 aa

016 aclassaDoga
017 abegina
018 aaaapropertyaStringaname;a
019 aaaapropertyaintaaaaage;aaaaaa//aAgeainayearsa
020 aaaapropertyaFleaaaadogsFlea;a
021 aa

022 aaaaconstructorTurtle(StringaaName,aintaanAge,aFleaaaFlea)a
023 aaaabegina
024 aaaaaaanameaaaaa=aaName;a

025 aaaaaaaageaaaaaa=aanAge;a

026 aaaaaaadogsFleaa=aaFlea;a

027 aaaaenda
028 aenda
029 aa

030 aclassaDogTesta
031 abegina
032 aaaabeginMaina
033 aaaaaaavaraFleaapa=anewaFlea("Pop");a

034 aaaaaaavaraFleaasa=anewaFlea("Squeak");a

035 aaaaaaavaraFleaaza=anewaFlea("Zip");a

036 aaaaaaaSystem.out.println("p=" a+ap);a

037 aaaaendMaina
038 aenda
// END FILE: jtw-tutorials/DogTest.jtw

Question 11.2: In the main function of the DogTest class, write code to call the toString

method for the fleas referenced by s and z.

Question 11.3: In the main method of the DogTest class, write code to construct three
dogs called "Fido", "Jimbo" and "Rex". For the purposes of the rest of these questions, let the
name of the references for Fido, Jimbo and Rex be f j and r. Note that the third parameter to
the Dog class is of type Flea. Therefore you will need to supply a Flea reference for each dog.
Make it so that Fido has a flea called Pop, Jimbo has a flea called Squeak, and Rex has a flea
called Zip.

HINT: If the flea called Pop is referenced by the variable name p, then this reference should
appear as the third argument in one of the calls to the Dog constructor.

Question 11.4: Write a toString method in the Dog class that works like the toString

method in the Flea class. Then call this method from the main function to print out the
full statistics of the three dogs that you have just created in Question 11.3.

52 CHAPTER 2. THE J.T.W. LANGUAGE

Question 11.5: By copying the pattern of the Flea and Dog classes, write a class DogOwner
that has three non-private properties: name, salary and ownersDog. Also write a three-parameter
constructor for the DogOwner class that sets these properties.
Question 11.6: Add some code into the main function to construct three dog owners called
Angus, Brian and Charles. Make it so that Angus has a dog called Rex, Brian has a dog called
Jimbo, and Charles has a dog called Fido. For the purposes of the rest of these questions, let the
name of the references for Angus, Brian and Charles be (respectively) a, b and c. Use the Dog
references that you created in Question 11.3 to achieve this. Make it so that Angus, Brian and
Charles have initial salaries of 10,000, 20,000 and 30,000.
Question 11.7: Without changing the call to the DogOwner constructor, change the value of
the salary property of object referenced by a to 1,000,000. Note that since the salary property
of the DogOwner class is non-private you should be able to set the value of the salary property

from the main function of DogTest.
Question 11.8: Write a toString method for the class DogOwner and add some code to the

main function to call it for Angus, Brian and Charles.
Question 11.9: What is the value of: a.ownersDog.dogsFlea.toString()? Add some code to

the main function to find out if it does what you think it should do.

2.6.12 Tutorial 12

Question 12.1: Write constructors for the classes SportsShoe and Runner below, by looking
at the main function to see how many arguments each constructor has.

// BEGIN FILE: jtw-tutorials/RunnerTest.jtw

001 aclassaSportsShoea
002 abegina
003 aa

004 aaaapropertyaStringamodel;aaaaaaaa//awhatakindaofashoeaitaisa
005 aaaapropertyadoubleaspeedBoost;aaa//atheaboostingafactoraofatheashoea
006 aa

007 aaaa//aconstructoragoesahere:a

008 aa

009 aaaa//aUsefulamethodaforadebugginga

010 aaaamethodaStringa toString ()a

011 aaaabegina

012 aaaaaaareturna "(Iaamaaashoeacalleda" a+amodela+a "aandamyaboostingafactoraisa" a+aspeedBoosta+a ")" ;a

013 aaaaenda
014 aa

015 aenda
016 aa

017 aclassaRunnera

018 abegina
019 aaaaprivateapropertyaStringaaaaaname;aaaaa//aRunner’saname.a
020 aaaaprivateapropertyaintaaaaaaaaspeed;aaaa//aspeedaofarunnerainakm/hr.a
021 aaaaprivateapropertyaSportsShoeashoes;aaaa//awhichashoeatheyaareawearinga
022 aa

023 aaaa//aconstructoragoesahere:a

024 aa

025 aaaa//aUsefulamethodaforadebugginga

026 aaaamethodaStringa toString ()a

027 aaaabegina

028 aaaaaaareturna "(Iaamaaarunneraandamyanameaisa" a+anamea+a "aandamyashoesaarea" a+ashoesa+a ")" ;a

029 aaaaenda
030 aa

031 aaaa/*a

032 aaaa**aThisaprivateamethodacomputeSpeedaworksaoutathearunnersaspeed,a

033 aaaa**abasedaonatheirabasicaspeedaandatheaspeedaboostadueatoathea

034 aaaa**aSportsShoeathatatheyaareacurrentlyawearing.a

035 aaaa*/a

036 aa

2.6. J.T.W. TUTORIALS 53

037 aaaa//amethodagoesahere:a

038 aa

039 aa

040 aaaa/**a
041 aaaa**aPrintsathearesultaofaracingatwoarunnersaagainstaeachaother.a
042 aaaa*/a
043 aaaafunctionavoida race (Runnerar1,aRunnerar2)a

044 aaaabegina
045 aaaaaaaifa(r1.computeSpeed()a>ar2.computeSpeed())athena
046 aaaaaaabegina
047 aaaaaaaaaaSystem.out.println("Runnera" a+ar1.namea+a "abeatsa" a+ar2.name);a

048 aaaaaaaenda
049 aaaaaaaelsea

050 aaaaaaabegina
051 aaaaaaaaaaSystem.out.println("Runnera" a+ar2.namea+a "abeatsa" a+ar1.name);a

052 aaaaaaaenda
053 aaaaenda
054 aa

055 aa

056 aaaa/**a
057 aaaa**aSwapsatheashoesaofatwoarunners.a
058 aaaa*/a

059 aaaafunctionavoida swapShoes (Runnerar1,aRunnerar2)a

060 aaaabegina
061 aaaaaavaraSportsShoeatempShoea=ar1.shoes;a
062 aaaaaar1.shoesa=ar2.shoes;a

063 aaaaaar2.shoesa=atempShoe;a

064 aaaenda
065 aenda
066 aa

067 aclassaRunnerTesta
068 abegina
069 aaaabeginMaina
070 aaaaaaavaraSportsShoeanikeaaaa=anewaSportsShoe("NikeaNX-71" ,aaa2.0);a

071 aaaaaaavaraSportsShoeareebocka=anewaSportsShoe("ReebockaR20" ,aa2.3);a

072 aaaaaaavaraSportsShoeapumaaaaa=anewaSportsShoe("PumaaP200-MMX" ,4.8);a

073 aa

074 aaaaaaavaraRunnerasga=anewaRunner("SpeedyaGonzalez" ,a55,anike);a

075 aaaaaaavaraRunneraswa=anewaRunner("SlickaWilly" ,aaaaa49,areebock);a

076 aaaaaaavaraRunnerafaa=anewaRunner("FataAlbert" ,aaaaaa15,apuma);a

077 aa

078 aaaaaaaRunner.race(sg,sw);a
079 aaaaaaa//aRunner.race(sg,sw,fa);a

080 aaaaaaa//asg.raceAgainst(sw);a

081 aaaaendMaina
082 aenda
083 aa

// END FILE: jtw-tutorials/RunnerTest.jtw

Question 12.2: In the Runner class, write the private method computeSpeed that has no
arguments and returns a double-precision floating point value that equals the runner’s running
speed. Note that the speed of a runner is determined by multiplying their speed property with
the speedBoost property of the shoes that they are wearing. For example, Speedy Gonzalez’s
running speed = 55 * 2.0 = 110.0.

Question 12.3: Fix the race method so that it checks for a draw.

Question 12.4: By copying the race method, write a three-parameter race method for racing
three runners against each other. Two methods in the same class with the same name is called
overloading in Java. Add a call to this method from the main function.

Question 12.5: What is the difference between a method and a function? Write a one parame-
ter method raceAgainst that behaves exactly like two-parameter function race. There are two
ways of doing this, one is to optionally use the this keyword rather than one of the parameters

54 CHAPTER 2. THE J.T.W. LANGUAGE

r1 or r2. The second way is for race to simply call race using this as one of the arguments to
the function.
Question 12.6: Is it true that any method can be re-worked into a function and vice versa?
Question 12.7: The swapShoes method in the Runner class swaps the shoes of two runners.

Add some code to the main function to swap the shoes of two runners and verify that the
shoes do indeed get swapped.
Question 12.8: Write a method called swapNames that swaps the names of two runners. You
can put this function into any class but it makes the most sense to put it into the Runner class
since it has two Runner parameters.
Question 12.9: Write a method swapSpeeds that swaps the speed properties of two runners.

2.6.13 Tutorial 13

Question 13.1: Study, compile and run the following code:

// BEGIN FILE: jtw-tutorials/CarTest.jtw

001 aclassaCara
002 abegina
003 aaaaa

004 aaaapropertyaStringaaaaaamodel;a
005 aaaapropertyaintaaaaaaaaavalue;a//aCar’savalueainadollarsa
006 aaaapropertyaintaaaaaaaaaserialNumber;a
007 aaaaprivateaclassVaraintaserialCountera=a1000;a
008 aaaaa

009 aaaaconstructorCar(StringaaModel,aintaaValue)a
010 aaaabegina
011 aaaaaaamodelaaaaaaaaa=aaModel;a

012 aaaaaaavalueaaaaaaaaa=aaValue;a

013 aaaaaaaserialNumberaa=aserialCounter;a

014 aaaaaaaserialCountera=aserialCountera+a1;a

015 aaaaenda
016 aaaaa

017 aaaapublicamethodaStringa toString ()a

018 aaaabegina

019 aaaaaaareturna "(Iaamaaacar,amodel=" a+amodela+a ",avalue=" a+avaluea+a

020 aaaaaaaaaaaaaa ",aserialanumber=" a+aserialNumbera+a ")" ;a

021 aaaaenda
022 aenda
023 aa

024 aclassaOwnera
025 abegina
026 aa

027 aaaapropertyaStringaname;a
028 aaaapropertyaintaaaamoney;a//aOwner’samoneyainadollarsa
029 aaaapropertyaCaraaaaownersCar;a
030 aa

031 aaaaconstructorOwner(StringaaName,aintaaMoney,aCaraaCar)a
032 aaaabegina
033 aaaaaaanameaaaaaa=aaName;a

034 aaaaaaamoneyaaaaa=aaMoney;a

035 aaaaaaaownersCara=aaCar;a

036 aaaaenda
037 aa

038 aaaapublicamethodaStringa toString ()a

039 aaaabegina

040 aaaaaaareturna "(Iaamaaacaraowner,aname=" a+anamea+a ",amoney=" a+amoneya+a

041 aaaaaaaaaaaaaa ",acar=(")a+aownersCara+a "))" ;a

042 aaaaenda
043 aenda
044 aa

045 a/**a

2.6. J.T.W. TUTORIALS 55

046 a*aaaaCodeagoesaherea
047 a*aa
048 a*/a
049 aclassaCarTesta
050 abegina
051 aaaabeginMaina
052 aaaaaaavaraCaraaafordaaa=anewaCar("FordaEscort" ,1000);a

053 aaaaaaavaraCaraaanissana=anewaCar("NissanaNivara" ,2000);a

054 aaaaaaavaraOwnerajoeaaaa=anewaOwner("JoeaBloggs" ,500,ford);a

055 aaaaaaavaraOwneramaryaaa=anewaOwner("MaryaSmith" ,600,null);a//aMaryahasanoacaratoastartawith.a

056 aaaaaaajoe.describe();a

057 aaaaendMaina
058 aenda
// END FILE: jtw-tutorials/CarTest.jtw

Question 13.2: What is the purpose of the class variable serialCounter?
Question 13.3: Write a method sellCar that increases the owner’s money by half the value
of their car and the owner’s car reference gets set to null, for no car. If the owner owns no car
(null) simply do nothing.
Question 13.4: Write a method in the Owner class called purchase so that:

001 Car newCar = new Car("Mini Cooper" ,100 0);

002 joe.purchase(newCar);

results in Joe’s money going down by newCar.value and Joe’s car being set to newCar. Call the
sellCar method before Joe purchases his new car
Question 13.5: Write a function in the Owner class called netWorth so that:

System.out.println("Joe’s net worth = " + joe.netWorth());

prints out Joes’ money plus the value of his car, if he has a car. You will need to use an if (. . .)
then . . . statement to test whether or not a reference is pointing to a valid object or null for no
object like so:

001 if (ownersCar == null)

002 then begin

003 // do not access ownersCar.value as ownersCar points to no object

004 end

005 else begin

006 // do access ownersCar.value

007 end

Question 13.6: Write a method in the Owner class called smashCar so that:

mary.smashCar();

halves the value of Mary’s car.
Question 13.7: Write a method in the Owner class called stealCarFrom so that:

mary.stealCarFrom(joe);

results in Mary selling his current car (if he has one) for its market value and Mary acquiring
ownership of Joe’s car. Also make Joe invoke his sellCar method to relinquish ownership of his
car if he has one.
Question 13.8: Write a function in the Owner class called swapMoney so that:

56 CHAPTER 2. THE J.T.W. LANGUAGE

Owner.swapMoney(joe,mary);

swaps the money of Joe and Mary.
Question 13.9: Write a function in the Owner class called swapCars so that:

Owner.swapCars(joe,mary);

swaps the cars of Joe and Mary.
Question 13.10: Write a function in the Car class called swapSerialNumbers so that:

Car.swapSerialNumbers(ford,nissan);

swaps the serial numbers of ford and nissan.
Question 13.11: Write a function in the Owner class called sellCarTo so that

joe.sellCarTo(mary);

results in Joe’s money going up by the value of his car and Mary’s money going down by the value
of his car, and the ownership of Mary’s car gets transferred to Joe.

2.6.14 Tutorial 14

Dr Seuss’ story Yertle the Turtle] describes how a turtle called Yertle sits at the top of a pile of
other turtles. In this example, the pile of turtles is represented by a linked list of Turtle objects,
with the down property serving to connect one Turtle object to another. If a Turtle object has
a non-null down property, then this represents a turtle that is sitting below the current one. The
last turtle in the linked list is the turtle that is at the bottom of the pile, which has a null value
for its down property.
Question 14.1: Study, compile and run the following code:

// BEGIN FILE: jtw-tutorials/TurtleTest.jtw

001 apackageafiles;a
002 aa

003 aclassaTurtlea
004 abegina
005 aa

006 aaaaprivateapropertyaStringaaname;a
007 aaaaprivateapropertyaintaaaaaage;aaaa//aTurtle’saageainayearsa
008 aaaaprivateapropertyadoubleaaweight;a//aTurtle’saweightainakga
009 aa

010 aaaa//a NOTE: athisapropertyaallowsaforalinkedalistsa

011 aaaapropertyaTurtleadown;a
012 aa

013 aaaaconstructorTurtle(StringaaName,aintaanAge,adoubleaaWeight)a
014 aaaabegina
015 aaaaaaanameaaa=aaName;a

016 aaaaaaaageaaaa=aanAge;a

017 aaaaaaaweighta=aaWeight;a

018 aaaaenda
019 aa

020 aaaa/**aGetteramethodaforanameapropertya*/a

021 aaaamethodaStringa getName ()a

022 aaaabegina
023 aaaaaaareturnaname;a
024 aaaaenda

https://en.wikipedia.org/wiki/Yertle_the_Turtle

2.6. J.T.W. TUTORIALS 57

025 aa

026 aaaa/**aGetteramethodaforaweightapropertya*/a

027 aaaamethodadoublea getWeight ()a

028 aaaabegina
029 aaaaaaareturnaweight;a
030 aaaaenda
031 aa

032 aaaa/**aUsefulamethodaforadebugginga*/a

033 aaaapublicamethodaStringa toString ()a

034 aaaabegina
035 aaaaaaareturnaname;a
036 aaaaenda
037 aa

038 aaaa/**aInsertsatheaturtleatabelowatheacurrentaonea*/a

039 aaaamethodavoida insert (Turtleat)a

040 aaaabegina
041 aaaaaaavaraTurtleatempa=athis.down;a
042 aaaaaaathis.downa=at;a
043 aaaaaaat.downa=atemp;a

044 aaaaenda
045 aenda
046 aa

047 apublicaclassaTurtleTesta
048 abegina
049 aaaabeginMaina
050 aa

051 aaaaaaavaraTurtleayurtlea=anewaTurtle("Yurtle" ,a103,a20);a

052 aaaaaaavaraTurtleazippyaa=anewaTurtle("Zippy" ,aa102,a30);a

053 aaaaaaavaraTurtleabunglea=anewaTurtle("Bungle" ,a101,a40);a

054 aa

055 aaaaaaa//a***aseealatera

056 aaaaaaayurtle.downa=azippy;a

057 aaaaaaazippy.downaa=abungle;a

058 aaaaaaabungle.downa=anull;a//a NOTE: anotaneededaasabungle.downaisanullabyadefaulta
059 aa

060 aaaaaaavaraintatotalWeighta=a0;a
061 aaaaaaafora(varaTurtleacurrenta=ayurtle;acurrenta!=anull;acurrent=current.down)a
062 aaaaaaabegina
063 aaaaaaaaaatotalWeighta=atotalWeighta+acurrent.getWeight();a

064 aaaaaaaenda
065 aaaaaaaSystem.out.println("Theatotalaweightaisa" a+atotalWeight);a

066 aaaaendMaina
067 aenda
// END FILE: jtw-tutorials/TurtleTest.jtw

The code in the main function after the *** sets up the following relationships between

the three Turtle objects (Bungle, Zippy and Yertle). Figure 2.2 shows the relationship between
the different turtles. When you traverse the list of turtles you must always start at the top turtle
(known as the head of the linked list). If you give a different value for the top turtle, your code
will think that the given turtle is the one at the top of the pile and you will get the wrong result.

Question 14.2: Move the code for calculating the total weight of the turtles from the main

function to a function called function void printTotalWeight (Turtle top) in the Turtle class

that prints out the total weight of the turtles. Then call that function from the main function
to get the same result as before. Note that that if printTotalWeight was a method then calling
that method using null (representing an empty list) like so: null.printTotalWeight() would
be an error, whereas Turtle.printTotalWeight(null) wouldn’t be and therefore is better. This
is one example of how methods and functions differ.
Question 14.3: Revision question for getters. By copying the pattern established by the
getName method, add two getter methods to the Turtle class: getAge which returns the current

58 CHAPTER 2. THE J.T.W. LANGUAGE

Yertle

Zippy

Bungle

down

down

down

null

Figure 2.2: A linked list of Turtle objects

turtle’s age and getWeight which returns the current turtle’s weight. Then call these methods

on the Yertle object in the main function. Note that the toString method would be more
appropriate as it handles nulls better but you known that the yurtle reference is not null so you
know it is safe to call the getAge and getWeight methods on the yurtle reference.
Question 14.4: Write a function Turtle findBottomTurtle (Turtle top) that returns the Turtle
object that is at the top of the pile, and returns null if there isn’t one.
Question 14.5: Then call this function from the main function using System.out.println()
and the top turtle yertle.
Question 14.6: Write a function Turtle findOldestTurtle (Turtle top) that returns the oldest
turtle or null if there isn’t one.
Question 14.7: Then call this function from the main function using System.out.println()
and the top turtle yurtle.
Question 14.8: Write a function Turtle findHeaviestTurtle (Turtle top) returns the heaviest
turtle, or null if there isn’t one.
Question 14.9: Then call this function from the main function using System.out.println()
and the top turtle yurtle.
Question 14.10: Write a function void sayPile (Turtle top) that prints the names of the turtles
in the pile starting from the top turtle and finishing at the bottom turtle. Then call this function
from the main function.
Question 14.11: Under what circumstances would it be okay to change the visibility of the down

property to private, like the name, age and weight properties?
Question 14.11: Add an extra parameter to the constructor which is a reference the to the
turtle below of the current one. Then remove all occurrences of the down property from the main
function. The advantage of this is that it enables you to change the visibility of the down property
to private.

2.6.15 Tutorial 15

Basic Inheritance

When you see the following code: class X extends Y, it means that class X inherits from the
class Y. Class X is called the subclass and the class Y is called the super-class or sometimes the
parent class. When the class X extends from Y, it pulls in all of the non-private methods and
propertys from the super-class Y. Inherited methods can override the behaviour of that same
method in the super-class to give behaviour that is specific to the sub-class. The concept of

2.6. J.T.W. TUTORIALS 59

methods overriding other methods is called dynamic method binding or more commonly the
more impressive-sounding name: polymorphism. The main thing that this tutorial shows is the
idea that inheritance is a non-symmetrical relationship. For example: in the code that follows,
the Bird class inherits from the Animal class, which corresponds to the idea that every bird
is an animal. The reverse, every animal is a bird is plainly not true! Inheritance forces you to
recognize this.
Question 15.1: Study, compile and run the following code. The following code shows how inher-
itance works. In the following code, the Bird class inherits from the Animal class. The Bird
class pulls in the Animal class’s age property and the canFly and talk methods. Importantly
the canFly property overrides the behaviour of the canFly method of the parent Animal class,
which reflects that fact that generally speaking, birds can fly. In the code that follows, note that
int properties are initialized to zero by default and the super method (also known as the con-
structor of the super-class) is called by default if there is a zero parameter constructor in the
super-class, which there is by default, even if you don’t write one!

001 class Animal

002 begin

003

004 property int age; // Animal’s age in years

005 property int health; // Animal’s health in hit points

006

007 constructor Animal()

008 begin

009 age = 0; // NOTE: not needed as set by default

010 health = 100 ;

011 end

012

013 method boolean canFly ()

014 begin

015 return false;

016 end

017

018 method void talk ()

019 begin

020 System.out.println("Hello");

021 end

022 end

023

024 class Bird extends Animal

025 begin

026

027 property double flySpeed; // Bird’s speed in km/h

028

029 constructor Bird()

030 begin

031 super(); // NOTE: not needed as called by default

032 flySpeed = 0; // NOTE: not needed as set by default

033 end

034

035 method boolean canFly ()

036 begin

037 return true;

038 end

039

60 CHAPTER 2. THE J.T.W. LANGUAGE

040 method void peck ()

041 begin

042 System.out.println("peck");

043 end

044 end

045

046 class InheriTest

047 begin

048 beginMain

049 var Bird eagle = new Bird();

050 eagle.talk();

051 eagle.peck();

052 endMain

053 end

Question 15.2: Override the talk method of the Animal class in the Bird class to print out
"Tweet Tweet!" rather than "hello" to give more accurate talking of bird objects.
Question 15.3: By copying the pattern established in the Bird class, change the eagle from
an instance of the Bird class to its own class in its own right and then create an instance of
that class in the main function of InheriTest. Your Eagle class should have one property:
int numberOfKills and one method: void attack() that internally increments the value of
numberOfKills. In the main function you should call every method of the Eagle class and
its super-classes.
Question 15.4: What is the advantage of using a new separate class to represent a new object
rather than using an instance of an existing class?
Question 15.5: Create a new class Kiwi that inherits from the Bird class. Your Kiwi class
should override the canFly method to return false, which reflects the fact that generally speaking
birds can fly, but the kiwi bird in particular does not fly. Your Kiwi class have a property
numberOfWorms. Once you have written the Kiwi class you should create an instance of the
Kiwi class in the main function.

Question 15.6: Why does the following line of code in the main function print out 100 but
there is no setting of that variable to that value in the Kiwi class?

System.out.println(k.health);

Question 15.7: In the classes Animal, Bird, Eagle and Kiwi, remove all of the canFly

methods and replace it with a single canFly property of the Animal class. In the constructors
you will need to set the value of the canFly property to a value that is appropriate for that class.
For example in the Bird class’s constructor you should set the canFly property to true, while
in the Kiwi class’s constructor you should set the canFly property to false.
Question 15.8: What is the advantage of having a canFly property over a bunch of canFly
methods?
There is an equally valid alternative to having a public property in the Animal class and that
is to have in the Animal class a private property canFly and a pair of methods for getting
and setting the value of the canFly property like so. These methods in J.T.W. and Java are
called getter methods and setter methods since, as their names suggest, getters are used for
getting the value of something and setters are used for setting the value of something. Note that
the canFly method of the code above corresponds to getCanFly method in the code below.

001 private property boolean canFly;

002

003 method boolean getCanFly ()

2.6. J.T.W. TUTORIALS 61

004 begin

005 return canFly;

006 end

007

008 method void setCanFly (boolean aCanFly)

009 begin

010 canFly = aCanFly;

011 end

You might think that it is simpler to have one thing (a single non-private property) rather than
three things (a private property and a non-private getter method and a non-private setter
method) and you would be right. However from the point of view of the client code that uses
the Animal class, the two approaches are identical. Later on when you learn more you will
understand under what circumstances the second getter and setter approach is better.
Question 15.9: Change the main function to what follows:

001 var Bird b = new Bird(10);

002 var Animal a = b;

003 a.talk();

004 a.peck();

When you compile this code it gives a compilation error. What line gives the error and what is
the reason for the error?
Question 15.10: Change the main function to what follows:

001 var Animal a = new Animal();

002 var Bird b = a;

003 b.talk();

004 b.peck();

When you compile this code it gives a compilation error. What line gives the error and what is
the reason for the error?

Run-time type inquiry

In J.T.W. and Java there is a keyword called instanceof that does a run-time check on the type
of an object. The following function:

001 function void say (Animal a)

002 begin

003 System.out.println(a instanceof Bird);

004 end

uses the instanceof keyword to determine the run-time type of the reference a and prints out
whether or not the reference is referring to a Bird object. Some examples should clarify the
situation:

• say(new Bird()) prints true, Since the parameter a is pointing to a bird object at run-
time,

• say(new Animal()) prints false since not every animal is a bird,

• say(new Eagle()) prints true, since every eagle is a bird, and

62 CHAPTER 2. THE J.T.W. LANGUAGE

• say(new Kiwi()) prints true, since every kiwi is a bird.

• var Animal a = new Animal(); say(a); prints false since at run-time a is not point-
ing to a bird object

• var Animal a = new Bird(); say(a); prints true since at run-time a is pointing to a
bird object.

In Tutorial 17 you will learn why in most cases it is better to use polymorphism instead of the
instanceof keyword for run-time type enquiry.

The super-class of all objects

Every class in Java inherits either directly or indirectly from a class called Object. That is to
say if x is a reference variable, then the run-time expression x instanceof Object is always true
except for the pathological case where x is null (i.e. is currently pointing to no object). The
Object class contains a method called toString that returns a string containing the run-time
class name of the object concatenated with the something like the memory address of the object
in base 16 (also known as hexadecimal) format. Since every class inherits from Object, every
object can have toString invoked upon it. Even better, every class X can override toString to
provide debugging information that is tailored to X. Therefore the toString method is convenient
for debugging. Since the toString method is a public method of the Object class it must
be overridden as a public method, since your overridden function cannot have weaker access
privileges.

2.6.16 Tutorial 16

This tutorial shows you a practical example of inheritance. The file StarWars.jtw is comprised
of three classes: XWing, TieFighter and StarWars. The first two represent spacecraft from
the two sides of the Star Wars films. The class StarWars is the driver class and contains code
for executing a battle between the X-Wings and the Tie Fighters.
Question 16.1: Study, compile and run the following code:

001 class XWing

002 begin

003

004 private property int shields;

005 private property int weapon;

006 private property boolean dead;

007

008 constructor XWing()

009 begin

010 shields = 100 0;

011 weapon = 10;

012 end

013

014 method int getWeapon ()

015 begin

016 return weapon;

017 end

018 method boolean isDead ()

019 begin

020 return dead;

021 end

2.6. J.T.W. TUTORIALS 63

022 method void hit (int damage)

023 begin

024 shields = shields - damage;

025 if (shields<0)

026 then begin

027 System.out.println("BOOM!!!");

028 dead = true;

029 end

030 end

031 end

032

033 class TieFighter

034 begin

035

036 private property int shields;

037 private property int weapon;

038 private property boolean dead;

039

040 constructor TieFighter()

041 begin

042 shields = 500 ;

043 weapon = 20;

044 end

045

046 method int getWeapon ()

047 begin

048 return weapon;

049 end

050 method boolean isDead ()

051 begin

052 return dead;

053 end

054 method void hit (int damage)

055 begin

056 shields = shields - damage;

057 if (shields<0)

058 then begin

059 System.out.println("BOOM!!!");

060 dead = true;

061 end

062 end

063 end

064

065 class StarWars

066 begin

067

068 private function void duel (XWing x, TieFighter t)

069 begin

070

071 for (;;)

072 begin

073 x.hit(t.getWeapon());

074 if (x.isDead())

075 then begin

64 CHAPTER 2. THE J.T.W. LANGUAGE

076 System.out.println("X-Wing is dead");

077 break;

078 end

079 t.hit(x.getWeapon());

080 if (t.isDead())

081 then begin

082 System.out.println("Tie Fighter is dead");

083 break;

084 end

085 end

086

087 end

088

089 private function void battle (XWing[] good, TieFighter[] evil)

090 begin

091

092 var int g = 0;

093 var int e = 0;

094 var int goodDeaths = 0;

095 var int evilDeaths = 0;

096

097 while (g<good.length and e<evil.length)

098 begin

099 System.out.println("battling X-Wing #" + g + " versus Tie Fighter #" + e);

100 duel(good[g],evil[e]);

101 if (good[g].isDead())

102 then begin

103 g = g + 1;

104 goodDeaths = goodDeaths + 1;

105 end

106 if (evil[e].isDead())

107 then begin

108 e = e + 1;

109 evilDeaths = evilDeaths + 1;

110 end

111 end

112

113 var int finalGood = good.length - goodDeaths;

114 var int finalEvil = evil.length - evilDeaths;

115

116 System.out.println();

117 System.out.println("Battle Report: X-Wings Tie Fighters");

118 System.out.println("--");

119 System.out.println();

120 System.out.println("Initial ships:" + good.length + " " + evil.length);

121 System.out.println();

122 System.out.println("Killed ships:" + goodDeaths + " " + evilDeaths);

123 System.out.println();

124 System.out.println("Final ships:" + finalGood + " " + finalEvil);

125 System.out.println();

126 if (finalGood>finalEvil)

127 then begin

128 System.out.println("The rebel alliance is victorious!");

2.6. J.T.W. TUTORIALS 65

129 end

130 else begin

131 System.out.println("The dark side has conquered!");

132 end

133 System.out.println();

134 end

135

136 beginMain

137

138 // defines the goodies array

139 var XWing[] goodies = new XWing[3];

140

141 // initializes the elements of the goodies array

142 for (var int i=0; i<goodies.length; i = i + 1)

143 begin

144 goodies[i] = new XWing();

145 end

146

147 // defines the baddies array

148 var TieFighter[] baddies = new TieFighter[3];

149

150 // initializes the elements of the baddies array

151 for (var int i=0; i<baddies.length; i=i+1)

152 begin

153 baddies[i] = new TieFighter();

154 end

155

156 battle(goodies,baddies);

157

158 endMain

159 end

Question 16.2: Compile and run this file to see the battle between the X-Wings and the Tie
Fighters unfold.
Question 16.3: If you look at the Java code for the XWing and TieFighter classes you will
notice that they are almost identical: They have the same methods and properties, the only
difference is that the XWing objects are initialized with a different value for their shields and
weapon properties to the TieFighter objects.
The next few questions will guide you through the process of using inheritance to eliminate this
unnecessary duplication of code. A new class called SpaceShip will be created and all of the
code that is common to XWing and TieFighter will be moved into this class. The XWing and
TieFighter classes will then be modified so that they both inherit from SpaceShip.
Question 16.4: The first step in this process is to create the outer shell of the SpaceShip class,
which you should now type in:

001 class SpaceShip

002 begin

003 end

Question 16.5: Move the properties shields, weapon and dead out of the XWing and TieFighter
classes and into the SpaceShip class. You must change the privacy status of the properties from
private to protected. The protected modifier was invented as an intermediate level of privacy be-
tween public and private. Like private, it allows visibility to the same class in which the method

66 CHAPTER 2. THE J.T.W. LANGUAGE

or property was defined, but unlike private it also allows visibility to sub-classes of the class in
which the method or property was defined.
Question 16.6: Move the three methods getWeapon, isDead and hit out of the XWing and
TieFighter classses and into the SpaceShip class. At this point, the XWing and TieFighter
classes should contain nothing but a constructor.
Question 16.7: Finally, add the extends keyword to the first line of the XWing and TieFighter
classes:

class XWing extends SpaceShip

and

class TieFighter extends SpaceShip

Question 16.8: Compile and run your program again, making sure that it produces the same
results now that it is using inheritance.
Question 16.9: The SpaceShip class is a superclass of both XWing and TieFighter con-
taining everything that X-Wings and Tie Fighters contain in common. Because the role of the
SpaceShip class is simply to hold these commonalities, we might choose to label the class with
the abstract keyword:

abstract class SpaceShip

This prevents us from creating instances of the SpaceShip class. Without the abstract modifier,
we could happily create a new SpaceShip(), which would be an object that is not an X-Wing,
nor a Tie Fighter, but just a vague “space ship”. If we consider this to be a logical mistake then
we can use abstract to prevent such calls to the SpaceShip constructor. Change the class
SpaceShip to be abstract and observe how the compiler will not accept any lines of the form:

var SpaceShip s = new SpaceShip(); // compiler error

Remove the abstract keyword and notice how the compiler will then allow this line to compile.

2.6.17 Tutorial 17

Question 17.1: Study the following code:

001 class AnimalTest

002 begin

003 private function void chatter (Animal[] a)

004 begin

005 for (var int i=0; i<a.length; i=i+1)

006 begin

007 a[i].talk();

008 end

009 end

010 beginMain

011 var Animal[] farm = { new Dog(),new Cow(),new Fish() };
012 var Animal[] ark = { new Dog(),new Dog(),new Cow(),new Cow(),new Fish(), new Fish() };
013 var Cow[] herd = { new Cow(),new Cow(),new Cow() };
014 chatter(farm);

015 chatter(ark);

2.6. J.T.W. TUTORIALS 67

016 chatter(herd);

017 endMain

018 end

019

020 class Animal

021 begin

022 method boolean breathesUnderwater ()

023 begin

024 return false;

025 end

026

027 method boolean isPredator ()

028 begin

029 return false;

030 end

031

032 method void talk ()

033 begin

034 end

035 end

036

037 class Dog extends Animal

038 begin

039 method boolean isPredator ()

040 begin

041 return true;

042 end

043

044 method void talk ()

045 begin

046 System.out.println("Woof woof!");

047 end

048 end

Question 17.2: Write the following classes that sub-class the Animal class above: Cow, Cat,
Fish, and Whale.
Question 17.3: Write the Shark class which extends Fish class. Override all necessary
methods. For the sake of this example and the code that follows, suppose that shark’s talk

method prints out "Chomp Chomp!" .

Question 17.4: Run the AnimalTest class to make sure that all the methods work correctly.
Question 17.5: Rewrite the chatter method so that it never calls the talk methods and
instead uses a series of if statements and the instanceof operator to test the run-time type of each
object in the a array. Here is some code to get you started:

001 private function void chatter (Animal[] a)

002 begin

003 for (var int i=0; i<a.length; i=i+1)

004 begin

005 if (a[i] instanceof Cow) then

006 begin

007 System.out.println("Moo!");

008 end

009 else if (a[i] instanceof Cat) then

68 CHAPTER 2. THE J.T.W. LANGUAGE

010 begin

011 System.out.println("Meow!");

012 end

013 /* other code goes here */

014 end

015 end

Note that the sub-classes must appear before super-classes in the above code, otherwise the wrong
message will be printed out for sub-classes.
Question 17.6: Why is the code from the last question not as good as calling each animal’s talk
method?

2.7 Proofs of concept for the J.T.W language

2.7.1 Proof of concept #1: A small collection of d-defmacros for your
use in client code

Study the following Elisp code which creates a pair of macros getter and setter , a macro

for implementing the singleton design pattern called singleton design pattern and a macro

foreach for implementing the iterator design pattern.

;; BEGIN FILE: ˜/dlisp/d-defmacro.el

001 a;;;ad-defmacro.ela
002 aa
003 a;;aCopyrighta(C)a2017aDavinaPearsona

004 aa

005 a;;aEmacsaLispaArchiveaEntrya

006 a;;aFilename:ad-defmacro.ela

007 a;;aAuthor/Maintainer:aDavinaMaxaPearsona<http://davin.50webs.com>a

008 a;;aKeywords:adefmacrosaforadefiningamacrosainaJ.T.W.a

009 a;;aVersion:a1.0a

010 aa

011 a;;;aCommentary:a
012 aa
013 a;;aThisafileaisapartaofaGNUaJavaaTrainingaWheels.a

014 a;;a

015 a;;;a m4 limitation of warranty a

016 aa
017 a;;;a m4 install instructions (d-defmacro)a

018 aa
019 a;;;aKnownaBugs:a
020 aa
021 a;;aNoneasoafar!a

022 aa

023 a;;;aCode:a
024 aa
025 a;;(load-filea"~/lisp++-projects/c++2lisp++-stage-1-purge-comments.el")a

026 a;;(load-filea(concata(caraload-path)a"lisp++-mode.el"))a

027 a;;(load-filea"~/lisp++-projects/lisp++2c++-cclass.el")a

028 aa

029 a(safe-requirea’d-flm)a

030 aa

031 a(setqad-macro-listanil)a
032 aa

033 a(defmacroa d-defmacro a(namea&restamacro-form)a

034 aaa‘(progna
035 aaaaaa(setqad-macro-lista(consa(quotea,aname)ad-macro-list))a
036 aaaaaa(defmacroa,anamea(&restarest)a
037 aaaaaaaa,@amacro-forma

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 69

038 aaaaaaaaaaa)a

039 aaaaaa))a

040 aa

041 a;;(setqatypea"int")a

042 a;;(setqavaria"v")a

043 a;;(setteraintai)a

044 aa

045 a(d-defmacroa
046 aagettera

047 aa(setqatypea(ntha0arest))a

048 aa(setqavaria(ntha1arest))a

049 aa(d-asserta(cdrarest))a

050 aa(d-asserta(nota(cdddrarest)))a

051 aa(ifa(nota(stringpatype))a
052 aaaaaa(setqatypea(prin1-to-stringatype)))a

053 aa(ifa(nota(stringpavari))a
054 aaaaaa(setqavaria(prin1-to-stringavari)))a

055 aa(setqapropanil)a

056 aa(setqavara(d-read-stra(concata "getter-setter-prop--" atypea "--" avari)))a

057 aa(whena(nota(anda(boundpavar)avar))a
058 aaaa(setavarat)a

059 aaaa(setqapropa(concata "privatea" atypea "aprivate " avaria ";")))a

060 aa(concata "publica" atypea "aget" a(d-string-capitaliseavari)a "()a" a

061 aaaaaaaaaa "{areturnaprivate " avaria ";a}" apropa "\n"))a

062 aa

063 a(d-defmacroa
064 aasettera

065 aa(setqatypea(ntha0arest))a

066 aa(setqavaria(ntha1arest))a

067 aa(d-asserta(cdrarest))a

068 aa(d-asserta(nota(cdddrarest)))a

069 aa(ifa(nota(stringpatype))a
070 aaaaaa(setqatypea(prin1-to-stringatype)))a

071 aa(ifa(nota(stringpavari))a
072 aaaaaa(setqavaria(prin1-to-stringavari)))a

073 aa(setqapropanil)a

074 aa(setqavara(d-read-stra(concata "getter-setter-prop--" atypea "--" avari)))a

075 aa(whena(nota(anda(boundpavar)avar))a
076 aaaa(setavarat)a

077 aaaa(setqapropa(concata "privatea" atypea "aprivate " avaria ";")))a

078 aa(concata "publicavoidaset" a(d-string-capitaliseavari)a "(" atypea "a" avaria ")" a

079 aaaaaaaaaa "a{athis.private" avaria "a=a" avaria ";a}" apropa "\n"))a

080 aa

081 a;;a(d-compress-argsa’("100"a"200"a"300"a")"))a

082 a(defuna d-compress-args a(rest)a

083 aaa(leta((ptraaaarest)a

084 aaaaaaaaa(resulta "(")a

085 aaaaaaaaa(countaa0))a;;a(setqacounta0)a

086 aaaaa(whileaptra

087 aaaaaaa(whena(nota(string=a(caraptr)a ")"))a

088 aaaaaaaaa(setqaresulta(concataresulta(ifa(/=acounta0)a ",")a(caraptr)))a

089 aaaaaaaaa(incfacount))a

090 aaaaaaa(setqaptra(cdraptr)))a

091 aaaaa(setqaresulta(concataresulta ")"))a

092 aaaaa(consaresultacount)a

093 aaaaa)a;;a endaLET! a

094 aaa)aaa;;aendaDEFUN!ad-compress-argsa
095 aa

096 a(defuna d-get-class-list a()a

097 aaa(interactive)a

098 aaa(save-excursiona
099 aaaaa(save-match-dataa

70 CHAPTER 2. THE J.T.W. LANGUAGE

100 aaaaaaa(leta(indent-straclass-or-interfaceaclass-nameap1ap2alist)a
101 aaaaaaaaa(goto-chara(point-min))a;;aaaaaaaaaaa1a

102 aaaaaaaaa(whilea(re-search-forwarda(concata "\\(^[a\t]*\\)" a

103 aaa "\\(public[a\t]+\\|abstract[a\t]+\\|" a

104 aaa "final[a\t]+\\|\\)*" a

105 aaa "\\(class\\|interface\\)a+" a

106 aaa "\\([A-Z][a-zA-Z0-9]*\\)")anilat)a

107 aaaaaaaaaaa;;aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa3aaaaaaaaaaaaaaaaaaaaaaaa4a

108 aaaaaaaaaaa(setqaindent-straaaaaaaaa(buffer-substring-no-propertiesa(match-beginninga1)a

109 aa(match-enda1)))a

110 aaaaaaaaaaa(setqaclass-or-interfacea(buffer-substring-no-propertiesa(match-beginninga3)a

111 aa(match-enda3)))a

112 aaaaaaaaaaa(setqaclass-nameaaaaaaaaa(buffer-substring-no-propertiesa(match-beginninga4)a

113 aa(match-enda4)))a

114 aaaaaaaaaaa(save-excursiona
115 aaaaaaaaaaaaa(beginning-of-line)a

116 aaaaaaaaaaaaa(setqap1a(point))a

117 aaaaaaaaaaaaa(conda

118 aaaaaaaaaaaaaa((save-excursiona
119 aaaaaaaaaaaaaaaaa(forward-linea1)a

120 aaaaaaaaaaaaaaaaa(beginning-of-line)a

121 aaaaaaaaaaaaaaaaa(looking-ata "^[a\t]*{"))a

122 aaaaaaaaaaaaaaa(forward-line)a

123 aaaaaaaaaaaaaaa(beginning-of-line)a

124 aaaaaaaaaaaaaaa(forward-sexp)a

125 aaaaaaaaaaaaaaa;;(ifa(string=aclass-namea"Singleton")a

126 aaaaaaaaaaaaaaa;;aaaa(d-debuga"PublicaEnemya/aMindaTerrorist"))a

127 aaaaaaaaaaaaaaa(setqap2a(point)))a

128 aaaaaaaaaaaaaa((save-excursiona
129 aaaaaaaaaaaaaaaaa(forward-linea1)a

130 aaaaaaaaaaaaaaaaa(beginning-of-line)a

131 aaaaaaaaaaaaaaaaa(looking-ata "^[a\t]*begin\\>"))a

132 aaaaaaaaaaaaaaa(re-search-forwarda(concata "^" aindent-stra "end[a\t]*$")anilat)a

133 aaaaaaaaaaaaaaa(setqap2a(point)))a

134 aaaaaaaaaaaaaa)a

135 aaaaaaaaaaaaa(setqalista(consa(listaclass-or-interfaceaclass-nameap1ap2)alist))))a

136 aaaaaaaaalist))))a

137 aa

138 a(defuna d-are-we-inside-class a(class)a

139 aaa(d-asserta(stringpa(ntha0aclass)))a

140 aaa(d-asserta(stringpa(ntha1aclass)))a

141 aaa(anda(>=a(point)a(ntha2aclass))a

142 aaaaaaaa(<=a(point)a(ntha3aclass))))a

143 aa

144 a(defuna d-find-matching-class a(class-list)a

145 aaa(blockanila
146 aaaaa(leta((ptraclass-list))a;;a(setqaptraclass-list)a
147 aaaaaaa(whileaptra
148 aaaaaaaaa(whena(d-are-we-inside-classa(caraptr))a
149 aaaaaaaaaaa;;(messagea"*afoundad-are-we-inside-classaclass-list=%sa(caraptr)=%s"aptra(caraptr))a

150 aaaaaaaaaaa;;(d-errora"Foomatic")a

151 aaaaaaaaaaa(returna(caraptr)))a
152 aaaaaaaaa(setqaptra(cdraptr))))))a
153 aa

154 a(defuna d-get-enclosing-class a()a

155 aaa(leta(class-list)a
156 aaaaa(setqaclass-lista(d-find-matching-classa(d-get-class-list)))a
157 aaaaa;;(d-errora"AlienaSyndromea/aclass-list=%s"aclass-list)a

158 aaaaaclass-list))a

159 aa

160 a;;a(setqacompress-argsa(d-compress-argsa’("100"a"200"a"300")))a

161 a(d-defmacroa
162 aasingleton design patterna

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 71

163 aa(leta(ctoracompress-argsacompressed-argsacompressed-counta
164 aaaaaaaaaaaaalist-of-classesamatching-classacountalocation)a

165 aaaa(setqaclassa(ntha1a(d-get-enclosing-class)))a

166 aaaa(d-errora(anda "PublicaEnemya/aHowatoaKillaaaRadioaConsultant" aclass))a

167 aaaa(with-temp-buffera
168 aaaaaa;;(whena(get-buffera"*singleton*")a

169 aaaaaa;;aa(kill-buffera"*singleton*"))a

170 aaaaaa;;(switch-to-buffera(generate-new-buffera"*singleton*"))a

171 aaaaaa(setqab2a(current-buffer))a

172 aaaaaa;;(messagea"*arest=%s"arest)a

173 aaaaaa(setqactora(ntha0arest))a

174 aaaaaa(insertactor)a

175 aaaaaa(goto-chara(point-min))a

176 aaaaaa(whilea(re-search-forwarda "^\\([a\t]*\\)constructor[a\t]*(" anilat)a

177 aaaaaaaa(replace-matcha(concata "\\1constructora" aclassa "(")a’fixedcase))a

178 aaaaaa(goto-chara(point-min))a

179 aaaaaa(d-asserta(flm-re-search-forward–no-comments-no-stringsa "(" anilat))a

180 aaaaaa(setqabegya(point))a

181 aaaaaa(setqacompress-argsa(d-compress-argsa(cdrarest)))a
182 aaaaaa(setqacompressed-argsa(caracompress-args))a

183 aaaaaa(setqacompressed-counta(cdracompress-args))a

184 aaaaaa(setqalocationa(flm-re-search-forward–no-comments-no-stringsa "(" anilat))a

185 aaaaaa(forward-chara-1)a

186 aaaaaa(forward-sexp)a

187 aaaaaa(setqaendya(point))a

188 aaaaaa(goto-charabegy)a

189 aaaaaa(setqacounta0)a

190 aaaaaa(condition-caseaerra
191 aaaaaaaaaa(whilea(<=a(point)aendy)a

192 aaaaaaaaaaaa(conda

193 aaaaaaaaaaaaa;;a---a

194 aaaaaaaaaaaaa((looking-ata "[a-zA-Z0-9]")a

195 aaaaaaaaaaaaaa(skip-chars-forwarda "a-zA-Z0-9 ")a

196 aaaaaaaaaaaaaa;;(messagea"*a[a-zA-Z0-9]a(point)=%saline=(%s)acount=%s"a

197 aaaaaaaaaaaaaa;;aa(point)a(d-current-line-as-string)acount)a

198 aaaaaaaaaaaaaa)a

199 aaaaaaaaaaaaa;;a---a

200 aaaaaaaaaaaaa((looking-ata "[a\t\r\n]")a

201 aaaaaaaaaaaaaa(skip-chars-forwarda "a\t\r\n")a

202 aaaaaaaaaaaaaa;;(messagea"skip-chars-forwardaa\\t\\r\\na(point)=%s"a(point))a
203 aaaaaaaaaaaaaa;;(d-debuga"PublicaEnemya/aDon’taBelieveatheaHype")a

204 aaaaaaaaaaaaaa)a

205 aaaaaaaaaaaaa;;a---a

206 aaaaaaaaaaaaa((looking-ata ",")a

207 aaaaaaaaaaaaaa(incfacount)a

208 aaaaaaaaaaaaaa;;(messagea"*a(point)=%saline=(%s)aincfacount=%s"a(point)a

209 aaaaaaaaaaaaaa;;aa(d-current-line-as-string)acount)a

210 aaaaaaaaaaaaaa(forward-char)a

211 aaaaaaaaaaaaaa;;(d-debuga"ColdaLampin’awithaFlavor")a

212 aaaaaaaaaaaaaa)a

213 aaaaaaaaaaaaa;;a---a

214 aaaaaaaaaaaaa((looking-ata "/*")a

215 aaaaaaaaaaaaaa(forward-sexp))a

216 aaaaaaaaaaaaa;;a---a

217 aaaaaaaaaaaaa((looking-ata "\"")a

218 aaaaaaaaaaaaaa;;(errora"*ainsideastring")a

219 aaaaaaaaaaaaaa(forward-sexp))a

220 aaaaaaaaaaaaa;;a---a

221 aaaaaaaaaaaaa((looking-ata "//")a

222 aaaaaaaaaaaaaa(forward-line)a

223 aaaaaaaaaaaaaa(beginning-of-line))a

224 aaaaaaaaaaaaa;;a---a

72 CHAPTER 2. THE J.T.W. LANGUAGE

225 aaaaaaaaaaaaa((looking-ata "(")a

226 aaaaaaaaaaaaaa(forward-sexp))a

227 aaaaaaaaaaaaa;;a---a

228 aaaaaaaaaaaaa((looking-ata ")")a

229 aaaaaaaaaaaaaa(forward-char)a

230 aaaaaaaaaaaaaa)a

231 aaaaaaaaaaaaa;;a---a

232 aaaaaaaaaaaaa((looking-ata "<")a

233 aaaaaaaaaaaaaa(forward-sexp))a

234 aaaaaaaaaaaaa;;a---a

235 aaaaaaaaaaaaa((looking-ata "{")a

236 aaaaaaaaaaaaaa(leta((debug-on-erroranil))a

237 aaaaaaaaaaaaaaaa(errora "{afoundainaargalist")))a

238 aaaaaaaaaaaaa;;a---a

239 aaaaaaaaaaaaa(ta

240 aaaaaaaaaaaaaa(messagea "Miscacasea(point)=%s" a(point))a

241 aaaaaaaaaaaaaa(forward-char))))a

242 aaaaaaaa(errora

243 aaaaaaaaa(messagea "Erroraerr=%s" a(prin1-to-stringaerr))))a

244 aaaaaa(incfacount)a;;a NOTE: aoneamoreathanatheanumberaofacommasa

245 aaaaaa(leta((debug-on-erroranil))a
246 aaaaaaaa(whena(/=acountacompressed-count)a

247 aaaaaaaaaa(d-debuga "(/=acountacompressed-count):acount=%sacompressed-count=%s" acountacompressed-count)))a

248 aaaaaa;;(d-debuga"PublicaEnemya/aRaiseatheaRoofa(point)=%s"a(point))a

249 aaaaaa(setqactora(buffer-substring-no-propertiesa(point-min)a(point-max)))a

250 aaaaaa(setqastra(concata "privatea" actora

251 aaaaaaaaaaaaaaaaaaaaaaaa "privateaclassVara" aclassa "aprivate instance;" a

252 aaaaaaaaaaaaaaaaaaaaaaaa "publicafunctiona" aclassa "agetInstance()" a

253 aaaaaaaaaaaaaaaaaaaaaaaa "{" a

254 aaaaaaaaaaaaaaaaaaaaaaaa "ifa(private instancea!=anull)athena" a

255 aaaaaaaaaaaaaaaaaaaaaaaa "{" a

256 aaaaaaaaaaaaaaaaaaaaaaaa "returnaprivate instance;" a

257 aaaaaaaaaaaaaaaaaaaaaaaa "}" a

258 aaaaaaaaaaaaaaaaaaaaaaaa "else" a

259 aaaaaaaaaaaaaaaaaaaaaaaa "{" a

260 aaaaaaaaaaaaaaaaaaaaaaaa "returnaprivate instancea=anewa" aclassacompressed-argsa ";" a

261 aaaaaaaaaaaaaaaaaaaaaaaa "}" a

262 aaaaaaaaaaaaaaaaaaaaaaaa "}"))a

263 aaaaaa;;(messagea"str=%s"astr)a

264 aaaaaastra

265 aaaaaa)a;;a endaWITH-TEMP-BUFFER! a

266 aaaa)aaa;;a endaLET! a

267 aa)aaaaa;;aendaD-DEFMARO!asingleton design patterna

268 aa

269 a(defuna split-string-into-csv a(str)a

270 aaa "Note:acsvastandsaforaCommaaSeparatedaValues" a

271 aaa(with-temp-buffera
272 aaaaa;;(whena(get-buffera"*csv*")a

273 aaaaa;;aa(kill-buffera"*csv*"))a

274 aaa;(set-buffera(generate-new-buffera "*csv*"))a

275 aaaaa;;(switch-to-buffera(current-buffer))a

276 aaaaa(setqab3a(current-buffer))a

277 aaaaa;;(switch-to-bufferab3)a

278 aaaaa(d-asserta(stringpastr))a

279 aaaaa(insertastr)a

280 aaaaa(jtw-mode)a
281 aaaaa;;(d-debuga"PublicaEnemya/aPublicaEnemyaNo.a1")a

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 73

282 aaaaa;;(leta((debug-on-erroranil))a

283 aaaaa;;aa(errora"Princea/aForeverainamyalife"))a

284 aaaaa(leta((doneaanil)a
285 aaaaaaaaaaa(endyaanil)a

286 aaaaaaaaaaa(p0aaaa(goto-chara(1+a(point-min))))a

287 aaaaaaaaaaa(p1aaaanil)a

288 aaaaaaaaaaa(listaanil)a

289 aaaaaaaaaaa(deptha0))a

290 aaaaaaa(whilea(notaendy)a
291 aaaaaaaaa(whilea(notadone)a

292 aaaaaaaaaaa(messagea "*aschmuadepth=%salooking-at=\"%s\"" a

293 aaaaaaaaaaaaaaaaaaaadeptha

294 aaaaaaaaaaaaaaaaaaaa(buffer-substring-no-propertiesa(point)a(jtw–clamp-
pointa(+a(point)a10))))a
295 aaaaaaaaaaa(condition-caseaerra
296 aaaaaaaaaaaaaaa(conda

297 aaaaaaaaaaaaaaaa((looking-ata "{")a

298 aaaaaaaaaaaaaaaaa(condition-caseaerra
299 aaaaaaaaaaaaaaaaaaaaa(forward-sexp)a

300 aaaaaaaaaaaaaaaaaaa(errora

301 aaaaaaaaaaaaaaaaaaaa(forward-char)a

302 aaaaaaaaaaaaaaaaaaaa(incfadepth))))a

303 aaaaaaaaaaaaaaaa((looking-ata ",")a

304 aaaaaaaaaaaaaaaaa(forward-chara1)a

305 aaaaaaaaaaaaaaaaa(whena(=adeptha0)a
306 aaaaaaaaaaaaaaaaaaa(setqadoneat)))a

307 aaaaaaaaaaaaaaaa((looking-ata "<")a

308 aaaaaaaaaaaaaaaaa(condition-caseaerra
309 aaaaaaaaaaaaaaaaaaaaa(progna
310 aaaaaaaaaaaaaaaaaaaaaaa(forward-sexp)a

311 aaaaaaaaaaaaaaaaaaaaaaa(conda

312 aaaaaaaaaaaaaaaaaaaaaaaa((save-excursiona
313 aaaaaaaaaaaaaaaaaaaaaaaaaaa(backward-char)a

314 aaaaaaaaaaaaaaaaaaaaaaaaaaa(looking-ata ">"))a

315 aaaaaaaaaaaaaaaaaaaaaaaaa;;a DOaNOTHING! a

316 aaaaaaaaaaaaaaaaaaaaaaaaa)a

317 aaaaaaaaaaaaaaaaaaaaaaaa((save-excursiona
318 aaaaaaaaaaaaaaaaaaaaaaaaaaa(backward-char)a

319 aaaaaaaaaaaaaaaaaaaaaaaaaaa(looking-ata ")"))a

320 aaaaaaaaaaaaaaaaaaaaaaaaa(decfadepth)a

321 aaaaaaaaaaaaaaaaaaaaaaaaa)))a

322 aaaaaaaaaaaaaaaaaaa(errora

323 aaaaaaaaaaaaaaaaaaaa(forward-char)a

324 aaaaaaaaaaaaaaaaaaaa(incfadepth))))a

325 aaaaaaaaaaaaaaaa((looking-ata "[a-zA-Z0-9]+")a

326 aaaaaaaaaaaaaaaaa(skip-chars-forwarda "a-zA-Z0-9 "))a

327 aaaaaaaaaaaaaaaa((looking-ata "[a\t\r\n]+")a

328 aaaaaaaaaaaaaaaaa(skip-chars-forwarda "a\t\r\n"))a

329 aaaaaaaaaaaaaaaa((eobp)a

330 aaaaaaaaaaaaaaaaa(setqadoneat)a

331 aaaaaaaaaaaaaaaaa(setqaendyat))a

332 aaaaaaaaaaaaaaaa((anda(looking-ata ")")a(>adeptha0))a

333 aaaaaaaaaaaaaaaaa(decfadepth)a

334 aaaaaaaaaaaaaaaaa(whena(=adeptha0)a
335 aaaaaaaaaaaaaaaaaaa(setqadoneat)a

336 aaaaaaaaaaaaaaaaaaa(setqaendyat)a

337 aaaaaaaaaaaaaaaaaaa))a

338 aaaaaaaaaaaaaaaa((looking-ata "(")a

339 aaaaaaaaaaaaaaaaa(condition-caseaerra
340 aaaaaaaaaaaaaaaaaaaaa(forward-sexp)a

341 aaaaaaaaaaaaaaaaaaa(errora

342 aaaaaaaaaaaaaaaaaaaa(forward-char)a

343 aaaaaaaaaaaaaaaaaaaa(incfadepth))))a

74 CHAPTER 2. THE J.T.W. LANGUAGE

344 aaaaaaaaaaaaaaaa((looking-ata "[")a

345 aaaaaaaaaaaaaaaaa(condition-caseaerra
346 aaaaaaaaaaaaaaaaaaaaa(forward-sexp)a

347 aaaaaaaaaaaaaaaaaaa(errora

348 aaaaaaaaaaaaaaaaaaaa(forward-chara1)a

349 aaaaaaaaaaaaaaaaaaaa(incfadepth))))a

350 aaaaaaaaaaaaaaaa((looking-ata "\\]")a

351 aaaaaaaaaaaaaaaaa(forward-char)a

352 aaaaaaaaaaaaaaaaa(decfadepth))a

353 aaaaaaaaaaaaaaaa((looking-ata "//")a

354 aaaaaaaaaaaaaaaaa(forward-sexp))a

355 aaaaaaaaaaaaaaaa((looking-ata "/*")a

356 aaaaaaaaaaaaaaaaa(forward-sexp))a

357 aaaaaaaaaaaaaaaa((looking-ata "\"")a

358 aaaaaaaaaaaaaaaaa(forward-sexp))a

359 aaaaaaaaaaaaaaaa(ta

360 aaaaaaaaaaaaaaaaa(forward-char)a

361 aaaaaaaaaaaaaaaaa))a

362 aaaaaaaaaaaaa(errora

363 aaaaaaaaaaaaaa;;(messagea"Erroraerr=%s"a(prin1-to-stringaerr))a

364 aaaaaaaaaaaaaa(conda

365 aaaaaaaaaaaaaaa((eqa(caraerr)a’invalid-regexp)a

366 aaaaaaaaaaaaaaaa;;(d-debuga"invalid-regexpa%s"a(prin1-to-stringaerr))a

367 aaaaaaaaaaaaaaaa(forward-char)a

368 aaaaaaaaaaaaaaaa(setqadoneat))a

369 aaaaaaaaaaaaaaa((eqa(caraerr)a’end-of-buffer)a

370 aaaaaaaaaaaaaaaa;;(d-debuga"end-of-buffera%s"a(prin1-to-stringaerr))a

371 aaaaaaaaaaaaaaaa(setqadoneat)a

372 aaaaaaaaaaaaaaaa(setqaendyat))a

373 aaaaaaaaaaaaaaa((eqa(caraerr)a’scan-error)a

374 aaaaaaaaaaaaaaaa(leta((debug-on-erroranil))a

375 aaaaaaaaaaaaaaaaaa(errora "scanaerrora%s" a(prin1-to-stringaerr)))a

376 aaaaaaaaaaaaaaaa(setqadoneat)a

377 aaaaaaaaaaaaaaaa(setqaendyat))a

378 aaaaaaaaaaaaaaa(ta

379 aaaaaaaaaaaaaaaa(leta((debug-on-erroranil))a

380 aaaaaaaaaaaaaaaaaa(errora "Miscaerror:a%s" aerr)))a

381 aaaaaaaaaaaaaaa))))a

382 aaaaaaaaa(setqadoneanil)a

383 aaaaaaaaa(setqap1a(point))a

384 aaaaaaaaa(setqastra(buffer-substring-no-propertiesap0a(1-ap1)))a

385 aaaaaaaaa(setqap0ap1)a

386 aaaaaaaaa;;(d-debuga"foomatic")a

387 aaaaaaaaa;;(d-asserta(nullalist))a

388 aaaaaaaaa(setqalista(consastralist))a

389 aaaaaaaaa;;(sit-and-messagea3a"list=%s"alist)a

390 aaaaaaaaa)a

391 aaaaaaa;;(d-debuga"Princea/aIt’saGonnaaBeaaabeautifulanight")a

392 aaaaaaa(setqalista(nreversealist)))))a

393 aa

394 a(defuna splat-list a(list)a

395 aaa;;(setqaargsa(evalaargs))a

396 aaa(leta((doneaaanil)a
397 aaaaaaaaa(iaaaaaa0)a

398 aaaaaaaaa(resultanil))a

399 aaaaa(whilea(notadone)a
400 aaaaaaa(ifa(nthaialist)a
401 aaaaaaaaaaa(setqaresulta(consa(nthaialist)aresult))a

402 aaaaaaaaa(setqadoneat))a

403 aaaaaaa(incfai)a

404 aaaaaaa)a

405 aaaaa(setqalista(mapcara(functiona(lambdaa(x)a‘(quotea,x)))alist))a

406 aaaaalist))a

407 aa

408 a(defuna fcall a(funca&restaargs)a

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 75

409 aaa(evala‘(,funca,@args))a

410 aaa)a

411 aa

412 a(d-defmacroa
413 aaforeacha

414 aa(setqavrbla(ntha0arest))a

415 aa(setqalista(ntha1arest))a

416 aa(messagea "vrbl=%s" avrbl)a

417 aa(messagea "list=%s" alist)a

418 aa(d-asserta(nulla(cdddrarest)))a

419 aa;;(d-asserta(nulla(ntha3arest)))a

420 aa(concata "fora(Iteratora" avrbla "=a" alista ".getIterator();a" a

421 aaaaaaaaaa "!" avrbla ".isDone();a" a

422 aaaaaaaaaavrbla ".next())")a

423 aa)a

424 aa

425 a(d-defmacroa
426 aanull macroa

427 aa(messagea "(ntha0arest)=%s" a(ntha0arest))a

428 aa(concata "publicapropertyaStringasa=a" a(prin1-to-stringa(ntha0arest))a ";"))a

429 aa

430 a(providea’d-defmacro)a

;; END FILE: ˜/dlisp/d-defmacro.el

Study the following fragment of jtw-build-java.el (see 2.13.1) which deals with macros:

;; BEGIN FILE: el/d-defmacro.el

001 a(progna
002 aaa(setqaptrad-macro-list)a
003 aaa(whileaptra
004 aaaaa(whilea(re-search-forwarda(prin1-to-stringa(caraptr))anilat)a
005 aaaaaaa(whena(nota(warn–inside-comment-or-string))a
006 aaaaaaaaa(beginning-of-line)a

007 aaaaaaaaa(setqap0a(point))a

008 aaaaaaaaa(skip-chars-forwarda "a-zA-Z0-9 a\t\r\n")a

009 aaaaaaaaa(setqap1a(point))a

010 aaaaaaaaa(ifa(nota(looking-ata "("))a

011 aaaaaaaaaaaaa(leta((debug-on-erroranil))a

012 aaaaaaaaaaaaaaa(errora "***aNotalookingaata\"(\"aexpression")))a

013 aaaaaaaaa(forward-sexpa1)a

014 aaaaaaaaa(setqap2a(point))a

015 aaaaaaaaa(setqastra(buffer-substring-no-propertiesap1ap2))a

016 aaaaaaaaa(delete-regionap0ap2)a

017 aaaaaaaaa(setqaargsa(split-string-into-csvastr))a

018 aaaaaaaaa(inserta(evala‘(fcalla(caraptr)a,@a(splat-listaargs))))a
019 aaaaaaaaa))a

020 aaaaa(setqaptra(cdraptr))))a

;; END FILE: el/d-defmacro.el

Here is some J.T.W. code that uses the getter and setter macros:

// BEGIN FILE: jtw-tutorials/Foo.jtw

001 aclassaFooa
002 abegina
003 aaaa getter (int,foo)a

004 aaaa setter (int,foo)a

005 aaaa getter (int,bar)a

006 aaaa setter (int,bar)a

007 aenda
// END FILE: jtw-tutorials/Foo.jtw

76 CHAPTER 2. THE J.T.W. LANGUAGE

Here is the resulting Java code:

// BEGIN FILE: jtw-tutorials/Foo.java

001 aclassaFooa
002 a{a
003 aaaapublicaaintaa getFoo ()a{areturna private foo ;a}a

004 aaaapublicaavoida setFoo (intafoo)a{a private foo a=afoo;a}a

005 aaaaprivateaintaa private foo ;a

006 aa

007 aaaapublicaintaa getBar ()a{areturna private bar ;a}a

008 aaaapublicavoida setBar (intabar)a{a private bar a=abar;a}a

009 aaaaprivateainta private bar ;a

010 a}a
// END FILE: jtw-tutorials/Foo.java

Note that the properties private foo and private bar are automatically created when you
call one of getter or setter macros. This is not the case for the Lisp++ version of the getter

and setter macros.

001 (class X 002 private property int i; 003 private property int j; 004 singleton design pattern (constructor

(int i, int j, /* rest of args */)

005 { this.i = i; this.j = j; /* rest of ctor code */},100 ,200 ,/* rests of ctor parameters

*/)

006)

which generates the following Java code:

001 class X

002 {
003 private property int i;

004 private property int j;

005 private X(int i, int j)

006 {
007 this.i = i;

008 this.j = j;

009 }
010 private X private instance;

011 public static X getInstance ()

012 {
013 if (private instance != null)

014 {
015 return private instance ;

016 }
017 else

018 {
019 return private instance = new X(100 ,200);

020 }
021 }
022 }

The foreach macro is called like so:

// BEGIN FILE: jtw-tutorials/IteratorTest.jtw

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 77

001 aa

002 aclassaNodea
003 abegina
004 aaaapropertyaObjectacurrent;a
005 aaaapropertyaNodeaaanext;a
006 aa

007 aaaaconstructorNode(Objectacurrent)a
008 aaaabegina
009 aaaaaaathis.currenta=acurrent;a
010 aaaaenda
011 aenda
012 aa

013 ainterfaceaIteratora
014 abegina

015 aaaapublicamethodaIteratora first ();a

016 aaaapublicamethodavoidaaaaa next ();a

017 aaaapublicamethodabooleanaa isDone ();a

018 aaaapublicamethodaObjectaaa currentItem ();a

019 aenda
020 aa

021 aclassaSinglyLinkedListIteratoraimplementsaIteratora
022 abegina
023 aaaapropertyaNodeafirst;a
024 aaaapropertyaNodeacurrent;a
025 aa

026 aaaaconstructorSinglyLinkedListIterator(Nodeafirst)a
027 aaaabegina
028 aaaaaaathis.firstaaa=afirst;a
029 aaaaaaathis.currenta=afirst;a
030 aaaaenda
031 aa

032 aaaapublicamethodaSinglyLinkedListIteratora first ()a

033 aaaabegina
034 aaaaaaareturnanewaSinglyLinkedListIterator(first);a
035 aaaaenda
036 aa

037 aaaapublicamethodavoida next ()a

038 aaaabegina
039 aaaaaaaifa(currenta!=anull)athena
040 aaaaaaabegina
041 aaaaaaaaaacurrenta=acurrent.next;a

042 aaaaaaaenda
043 aaaaenda
044 aa

045 aaaapublicamethodabooleana isDone ()a

046 aaaabegina
047 aaaaaaareturnacurrenta==anull;a
048 aaaaenda
049 aa

050 aaaapublicamethodaObjecta currentItem ()a

051 aaaabegina
052 aaaaaaareturnacurrent.current;a
053 aaaaenda
054 aenda
055 aa

056 aclassaSinglyLinkedLista
057 abegina
058 aaaapropertyaNodeafirst;a
059 aa

060 aaaapublicamethodaIteratora getIterator ()a

061 aaaabegina
062 aaaaaaareturnanewaSinglyLinkedListIterator(first);a

063 aaaaenda
064 aa

065 aaaapublicamethodavoida addElement (Objectao)a

78 CHAPTER 2. THE J.T.W. LANGUAGE

066 aaaabegina
067 aaaaaaavaraNodeana=anewaNode(o);a
068 aaaaaaan.nexta=afirst;a

069 aaaaaaafirstaa=an;a

070 aaaaenda
071 aenda
072 aa

073 aclassaIteratorTesta
074 abegina
075 aaaabeginMaina
076 aaaaaaaSystem.out.println("WelcomeatoaIteratorTest");a

077 aaaaaaavaraSinglyLinkedListalista=anewaSinglyLinkedList();a
078 aaaaaaalist.addElement(123);a

079 aaaaaaalist.addElement(456);a

080 aaaaaaalist.addElement(789);a

081 aaaaaaalist.addElement("apple");a

082 aaaaaaalist.addElement("banana");a

083 aaaaaaalist.addElement("carrot");a

084 aaaaaaavaraintaia=a0;a
085 aaaaaaa foreach a(n,list)a

086 aaaaaaabegina
087 aaaaaaaaaaSystem.out.println("i=" a+aia+a ",a" a+an.currentItem());a

088 aaaaaaaaaai++;a

089 aaaaaaaenda
090 aaaaaaaSystem.out.println();a
091 aaaaendMaina
092 aenda
// END FILE: jtw-tutorials/IteratorTest.jtw

The above code results in the following print out:

Welcome to file: IteratorTest

i=0, carrot

i=1, banana

i=2, apple

i=3, 789

i=4, 456

i=5, 123

2.7.2 Proof of concept #2: A superfor macro

One application of the Java preprocessor is the superfor macro, which is an enhanced BASIC-style
for loop. Here is how to invoke the superfor macro in your *.jtw file:

// BEGIN FILE: jtw-tutorials/SuperFor.jtw

001 aclassaSuperFora
002 abegina
003 aaaabeginMaina
004 aaaaaaaSystem.out.println("WelcomeatoaSuperFor.jtw")a

005 aaaaaaasuperfora(varaintaia=a0atoa10)a
006 aaaaaaabegina
007 aaaaaaaaaaSystem.out.println("i=" a+ai);a

008 aaaaaaaenda
009 aaaaendMaina
010 aenda
// END FILE: jtw-tutorials/SuperFor.jtw

The above code results in the following printout:

Welcome to file: SuperFor.jtw

i=0

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 79

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

The step size argument is optional, here is an example with an explicit step size announced:

// BEGIN FILE: jtw-tutorials/SuperFor2.jtw

001 aclassaSuperFor2a
002 abegina
003 aaaabeginMaina
004 aaaaaaaSystem.out.println("WelcomeatoaSuperFor2.jtw")a

005 aaaaaaasuperfora(varaintaia=a0atoa10astepa2)a
006 aaaaaaabegina
007 aaaaaaaaaaSystem.out.println("i=" a+ai);a

008 aaaaaaaenda
009 aaaaendMaina
010 aenda
// END FILE: jtw-tutorials/SuperFor2.jtw

The above code results in the following printout:

Welcome to file: SuperFor2.jtw

i=0

i=2

i=4

i=6

i=8

i=10

If the downto keyword is given instead of the to keywords then the loop will count downwards
from the first given number to the second, even if a positive step size is given. Here is an example
with a negative step size:

// BEGIN FILE: jtw-tutorials/SuperFor3.jtw

001 aclassaSuperFor3a
002 abegina
003 aaaabeginMaina
004 aaaaaaaSystem.out.println("WelcomeatoaSuperFor3.jtw")a

005 aaaaaaasuperfora(varaintaia=a10adowntoa0astepa2)a
006 aaaaaaabegina
007 aaaaaaaaaaSystem.out.println("i=" a+ai);a

008 aaaaaaaenda
009 aaaaendMaina
010 aenda
// END FILE: jtw-tutorials/SuperFor3.jtw

The above code results in the following printout:

Welcome to file: SuperFor3.jtw

i=10

80 CHAPTER 2. THE J.T.W. LANGUAGE

i=8

i=6

i=4

i=2

i=0

Note that the specification of the superfor macro doesn’t need constants as the values of start,
stop and step-size. They can be any variable or more generally any Java expression, and those
expressions will be evaluated only once, should your code have side effects, i.e. changes the value of
a variable in your code. In the following code, the expression ++x has the side effect of incrementing
the value of x before returning the value of x. Similarly for fooVariable. See the following code:

// BEGIN FILE: jtw-tutorials/SuperFor4.jtw

001 aclassaSuperFor4a
002 abegina
003 aaaaclassVaraintafooVariablea=a22;a
004 aa

005 aaaafunctionainta foo ()a

006 aaaabegina
007 aaaaaaareturna++fooVariable;a
008 aaaaenda
009 aa

010 aaaafunctionainta bar ()a

011 aaaabegina
012 aaaaaaareturna2;a
013 aaaaenda
014 aa

015 aaaabeginMaina
016 aaaaaaaSystem.out.println("WelcomeatoaSuperFor4.jtw")a

017 aaaaaaavaraintaxa=a15;a
018 aaaaaaasuperfora(varaintaia=afoo()a-abar()atoa(2a*a++x))a
019 aaaaaaabegina
020 aaaaaaaaaaSystem.out.println("i=" a+ai);a

021 aaaaaaaenda
022 aaaaendMaina
023 aenda
// END FILE: jtw-tutorials/SuperFor4.jtw

The above code results in the following printout:

Welcome to file: SuperFor4.jtw

i=21

i=22

i=23

i=24

i=25

i=26

i=27

i=28

i=29

i=30

i=31

i=32

Elisp source code for the superfor macro

The following code belongs in the file jtw-build-java.el which in itself is too large for inclusion
in this book (2,900+ lines of code). You can find this code by visiting the following Website:

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 81

davin.50webs.com/J.T.W/tutorial-01-HelloWorld.html

and clicking on the tarball in Question 1.1. Alternatively, you can study this fragment of the file
jtw-build-java.el which deals with the superfor macro.

;; BEGIN FILE: el/superfor.el

001 a(leta(p1ap2astraformatypeavariableaTavarastartastopa
002 aaaaaaaaaastep-sizeastep-size-2athis startathis stopathis stepa

003 aaaaaaaaaathis step sizeafilealineap-priorabeg0aend0a

004 aaaaaaaaaa(case-fold-searchanil)afromatoastepakeyword-toa

005 aaaaaaaaaakeyword-step-size)a

006 aaa(setqastrobeanil)a

007 aaa(checkpointa "2")a

008 aaa(save-excursiona
009 aaaaa(goto-chara(point-min))a

010 aaaaa(setqa*superfor*a0)a

011 aaaaa(whilea(re-search-forwarda "\\<superfor\\>" anilat)a

012 aaaaaaa(checkpointa "foundasuperfor...")a

013 aaaaaaa(setqabeg0a(match-beginninga0))a

014 aaaaaaa(setqaend0a(match-enda0))a

015 aaaaaaa;;(checkpointa"sittingafora1aseconds...")a

016 aaaaaaa(font-lock-fontify-buffer)a

017 aaaaaaa(whena(save-excursiona
018 aaaaaaaaaaaaaaa(save-match-dataa
019 aaaaaaaaaaaaaaaaa(re-search-forwarda "(" a(point-at-eol)at)a

020 aaaaaaaaaaaaaaaaa(forward-chara-1)a

021 aaaaaaaaaaaaaaaaa(re-search-forwarda "\\<var\\>" a(point-at-eol)at)a

022 aaaaaaaaaaaaaaaaa(nota(warn–inside-comment-or-string))))a
023 aaaaaaaaa;;superfora(varaintaia=a0atoa10)a

024 aaaaaaaaa;;(errora"Smellyacat")a

025 aaaaaaaaa(setqa*current-buffer*a(current-buffer))a
026 aaaaaaaaa(setqap1abeg0)a

027 aaaaaaaaa(skip-chars-forwarda "a\t\r\n")a

028 aaaaaaaaa(whena(nota
029 aaaaaaaaaaaaaaaa(save-match-dataa

030 aaaaaaaaaaaaaaaaaa(looking-ata "{")))a

031 aaaaaaaaaaa;;aEVALaHERE!avvva

032 aa

033 aaaaaaaaaaa(setqap2a;;aEVALaHERE!annna

034 aaaaaaaaaaaaaaaaa(save-excursiona
035 aaaaaaaaaaaaaaaaaaa(forward-sexpa1)a

036 aaaaaaaaaaaaaaaaaaa(point)))a

037 aaaaaaaaaaa(setqastra(buffer-substring-no-propertiesaend0ap2))a

038 aaaaaaaaaaa(checkpointa "str=%s" astr)a

039 aaaaaaaaaaa(setqaforma(read-strastr))a

040 aaaaaaaaaaa(checkpointa "form=%s" aform)a

041 aaaaaaaaaaa;;(d-debuga"form")a

042 aaaaaaaaaaa;;(d-asserta(conspaform))a

043 aaaaaaaaaaa(messagea "***aform=%s" aform)a

044 aaaaaaaaaaa;;(setqadebug-on-erroranil)a

045 aaaaaaaaaaa;;(errora"TheaRollingaStonesa/aRollingaStonesaplaysaCuba")a

046 aaaaaaaaaaa(messagea "(deleted-region=%s)" a(buffer-substring-no-propertiesap1ap2))a

047 aaaaaaaaaaa(delete-regionap1ap2)a

048 aaaaaaaaaaa(incfa*superfor*)a

049 aaaaaaaaaaa(setqathisa(formata "superfor %d " a*superfor*))a

050 aaaaaaaaaaa(whena(nota(eqa(ntha0aform)a’var))a
051 aaaaaaaaaaaaa(warn–log-
messagea "Errora35:aKeywordavaramissingafromasuperforaconstruct")a

052 aaaaaaaaaaaaa)a

053 aaaaaaaaaaa(whena(eqa(ntha0aform)a’var)a
054 aaaaaaaaaaaaa(ifa(anda(nota(eqa(ntha1aform)a’char))a
055 aaaaaaaaaaaaaaaaaaaaaa(nota(eqa(ntha1aform)a’short))a

http://davin.50webs.com/J.T.W/tutorial-01-HelloWorld.html

82 CHAPTER 2. THE J.T.W. LANGUAGE

056 aaaaaaaaaaaaaaaaaaaaaa(nota(eqa(ntha1aform)a’int))a

057 aaaaaaaaaaaaaaaaaaaaaa(nota(eqa(ntha1aform)a’long))a

058 aaaaaaaaaaaaaaaaaaaaaa(nota(eqa(ntha1aform)a’float))a

059 aaaaaaaaaaaaaaaaaaaaaa(nota(eqa(ntha1aform)a’double)))a

060 aaaaaaaaaaaaaaaaa(warn–log-messagea(concata
061 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa "Errora37:#2aargumentatypeatoasuperforamacroamustabe" a

062 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa "aoneaofachar/short/int/long/float/double")))a

063 aaaaaaaaaaaaa;;a(setqaforma’(varaintai=0atoastop))a

064 aaaaaaaaaaaaa;;a(setqaforma’(varaintaia=0atoastop))a

065 aaaaaaaaaaaaa;;a(setqaforma’(varaintaia=a0atoastop))a

066 aaaaaaaaaaaaa(progna
067 aaaaaaaaaaaaaaa(setqaform-stra(arefa(evala‘(d-prin1-to-string-javaa,formasexy))a0))a

068 aaaaaaaaaaaaaaa(whena(string-matcha "^var[a\t]*" aform-str)a

069 aaaaaaaaaaaaaaaaa(setqaform-stra(substringaform-stra(match-enda0))))a

070 aaaaaaaaaaaaaaa(whena(string-matcha "^\\(char\\|short\\|int\\|long\\|float\\|double\\)\\>" aform-str)a

071 aaaaaaaaaaaaaaaaa(setqaTaaaaaaaaaaaaaaaaaaaaaaa(substringaform-stra(match-beginninga0)a(match-enda0)))a

072 aaaaaaaaaaaaaaaaa(setqaform-stra(d-trim-stringa(substringaform-stra(match-enda0))))a

073 aaaaaaaaaaaaaaaaa(whena(string-matcha "[^<>]=" aform-str)a

074 aaaaaaaaaaaaaaaaaaa(setqavara(substringaform-stra0a(1+a(match-beginninga0))))a

075 aaaaaaaaaaaaaaaaaaa(setqaform-stra(substringaform-stra(1+a(lengthavar))))a

076 aaaaaaaaaaaaaaaaaaa))a

077 aaaaaaaaaaaaaaa(conda

078 aaaaaaaaaaaaaaaa((string-matcha "\\<to\\>" aform-str)a

079 aaaaaaaaaaaaaaaaa(messagea "foundato")a

080 aaaaaaaaaaaaaaaaa(setqakeyword-toa’to)a

081 aaaaaaaaaaaaaaaaa(setqastartaaaaaa(d-trim-
stringa(substringaform-stra0a(match-beginninga0))))a
082 aaaaaaaaaaaaaaaaa(setqaform-straaa(d-trim-
stringa(substringaform-stra(match-enda0))))a
083 aaaaaaaaaaaaaaaaa)a

084 aaaaaaaaaaaaaaaa((string-matcha "\\<downto\\>" aform-str)a

085 aaaaaaaaaaaaaaaaa(messagea "foundadownto")a

086 aaaaaaaaaaaaaaaaa(setqakeyword-toa’downto)a

087 aaaaaaaaaaaaaaaaa(setqastartaaaa(d-trim-
stringa(substringaform-stra0a(match-beginninga0))))a
088 aaaaaaaaaaaaaaaaa(setqaform-stra(d-trim-stringa(substringaform-stra(match-enda0))))a
089 aaaaaaaaaaaaaaaaa)a

090 aaaaaaaaaaaaaaaa)a;;a ENDaCOND! a

091 aaaaaaaaaaaaaaa)a

092 aaaaaaaaaaaaa;;(d-debuga"DuranaDurana/aGirlsaonaFilm")a

093 aaaaaaaaaaaaa;;(setqaforma’(varaintaia=a0atoa10astepa2))a

094 aaaaaaaaaaaaa(progna

095 aaaaaaaaaaaaaaa(ifa(string-matcha "\\<step\\>" aform-str)a

096 aaaaaaaaaaaaaaaaaaa(progna
097 aaaaaaaaaaaaaaaaaaaaa(setqakeyword-step-sizeat)a

098 aaaaaaaaaaaaaaaaaaaaa(setqastopa(d-trim-
stringa(substringaform-stra0a(match-beginninga0))))a
099 aaaaaaaaaaaaaaaaaaaaa(setqastepa(d-trim-stringa(substringaform-stra(match-enda0))))a
100 aaaaaaaaaaaaaaaaaaaaa)a

101 aaaaaaaaaaaaaaaaa(setqakeyword-step-sizeanil)a

102 aaaaaaaaaaaaaaaaa(setqastopa(d-trim-stringaform-str))a
103 aaaaaaaaaaaaaaaaa(setqastepanil)a

104 aaaaaaaaaaaaaaaaa)a

105 aaaaaaaaaaaaaaa;;(setqastartaform)a

106 aaaaaaaaaaaaaaa;;(whena(string-matcha"="astart)a

107 aaaaaaaaaaaaaaa;;aa(setqastarta(substringastarta(match-enda0))))a

108 aaaaaaaaaaaaaaa;;(whena(string-matcha"\\<to\\>"astart)a

109 aaaaaaaaaaaaaaa;;aa(setqastarta(d-trim-stringa(substringastarta0a(match-beginninga0)))))a

110 aaaaaaaaaaaaaaa;;(setqarest1a(evala‘(d-prin1-to-string-javaa,aformastep)))a

111 aaaaaaaaaaaaaaa;;(setqastopa(arefarest1a0))a

112 aaaaaaaaaaaaaaa;;(whena(string-matcha"\\<to\\>"astop)a

113 aaaaaaaaaaaaaaa;;aa(setqastopa(d-trim-stringa(substringastopa(match-enda0)))))a

114 aaaaaaaaaaaaaaa;;(setqakeyword-stepa(cara(arefarest1a1)))a

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 83

115 aaaaaaaaaaaaaaa;;(whenakeyword-stepa

116 aaaaaaaaaaaaaaa;;aa(setqastepa(arefarest1a1))a

117 aaaaaaaaaaaaaaa;;aa(whena(eqakeyword-stepa’step)a

118 aaaaaaaaaaaaaaa;;aaaa(setqastepa(cadra(arefarest1a1)))a

119 aaaaaaaaaaaaaaa;;aaaa(ifastepa(setqakeyword-step-sizea’step))))a

120 aaaaaaaaaaaaaaa)aaaaaaaaaaaa;;a ENDaPROGN! a

121 aaaaaaaaaaaaa;;(d-debuga"ArtaBlakeya/aLou’saBlues")a

122 aaaaaaaaaaaaa(progna;;a(warn--cull-quotes)a
123 aaaaaaaaaaaaaaa;;(setqavaraaaaaaaaaeq)a

124 aaaaaaaaaaaaaaa(setqastart-2aaaaa(warn–splat-questastart))a
125 aaaaaaaaaaaaaaa(setqastop-2aaaaaa(warn–splat-questastopa))a
126 aaaaaaaaaaaaaaa(setqastep-size-2a(warn–splat-questastepa))a

127 aaaaaaaaaaaaaaa)a;;a ENDaPROGN! a

128 aaaaaaaaaaaaa;;a---a

129 aaaaaaaaaaaaa;;(d-debuga"TheaPretendersa/aPrecious")a

130 aaaaaaaaaaaaa(setqathis startaaaaa(concatathisa "start"))a

131 aaaaaaaaaaaaa(setqathis stopaaaaaa(concatathisa "stop"))a

132 aaaaaaaaaaaaa(setqathis stepaaaaaa(concatathisa "step"))a

133 aaaaaaaaaaaaa(setqathis step sizea(concatathisa "step size"))a

134 aaaaaaaaaaaaa;;(d-debuga"DireaStraitsa/aMyaParties")a

135 aaaaaaaaaaaaa(inserta(concata(concata "vara" aTa "a" athis starta "a=a" astart-2a ";a")a

136 aaaaaaaaaaaaaaaaaaaaaaaaaaaaa(concata "vara" aTa "a" athis stopaa "a=a" astop-2aa ";a")a

137 aaaaaaaaaaaaaaaaaaaaaaaaaaaaa(ifakeyword-step-sizea

138 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(concata "vara" aTa "a" athis stepa "a=a" astep-size-2a ";a" a

139 aaa "vara" aTa "a" athis step sizea "a=a" a

140 aaa(conda

141 aa((eqakeyword-toa’to)a

142 aaa(concata "Math.abs(" athis stepa ")"))a

143 aa((eqakeyword-toa’downto)a

144 aaa(concata "-Math.abs(" athis stepa ")"))a

145 aa(ta

146 aaa(d-debuga "DireaStraitsa/aHeavyaFuel")))a

147 aaa ";\n" a

148 aaa)a

149 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(concata "vara" aTa "a" athis step sizea "a=a" a

150 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(conda

151 aa((eqakeyword-toa’to)a

152 aaa "1")a

153 aa((eqakeyword-toa’downto)a

154 aaa "-1")a

155 aa(ta

156 aaa(d-debuga "DireaStraitsa/aTicketatoaHeaven")))a

157 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa ";\n" a

158 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)a;;a ENDaCONCAT! a

159 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)aaaaaaaaa;;a ENDaif! a

160 aaaaaaaaaaaaaaaaaaaaaaaaaaaaa)aaaaaaaaaaa;;a ENDaCONCAT! a

161 aaaaaaaaaaaaaaaaaaaaa)aaaaaaaaaaaaaaaaaaa;;a ENDaINSERT! a

162 aaaaaaaaaaaaa)aaaaaaaaaaaaaaaaaaaaaaaaaaa;;a ENDaPROGN! a

163 aaaaaaaaaaa;;(d-debuga"RodaStewarta/aHotaLegs")a

164 aaaaaaaaaaa(setqalinea0)a

165 aaaaaaaaaaa(setqap-priora

166 aaaaaaaaaaaaaaaaa(save-excursiona
167 aaaaaaaaaaaaaaaaaaa(beginning-of-line)a

168 aaaaaaaaaaaaaaaaaaa(setqastra(concata "^[a\t]*//+a" a*pp-

namespace*a "#location[0-9]" a

169 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa "a(\\(" aaaaaaa*drive-

spec*aaa "[-a-zA-Z0-9 ./]+\\):\\([0-9]+\\))"))a

84 CHAPTER 2. THE J.T.W. LANGUAGE

170 aaaaaaaaaaaaaaaaaaa(ifa(ora(looking-atastr)a(re-search-backwardastranilat))a
171 aaaaaaaaaaaaaaaaaaaaaaa(progna
172 aaaaaaaaaaaaaaaaaaaaaaaaa;;(d-debuga"AntonioaVivaldi")a

173 aaaaaaaaaaaaaaaaaaaaaaaaa(setqafilea(buffer-substring-no-propertiesaaaaaaaaaaa(match-beginninga1)a

174 aa(match-enda1)))a

175 aaaaaaaaaaaaaaaaaaaaaaaaa(d-asserta(stringpafile))a

176 aaaaaaaaaaaaaaaaaaaaaaaaa(setqalinea(read-stra(buffer-substring-no-propertiesa(match-beginninga3)a

177 aa(match-enda3))))a

178 aaaaaaaaaaaaaaaaaaaaaaaaa(d-asserta(integerpaline))a

179 aaaaaaaaaaaaaaaaaaaaaaaaa(point)a

180 aaaaaaaaaaaaaaaaaaaaaaaaa)a

181 aaaaaaaaaaaaaaaaaaaaa(setqafilea(concata*def-dir*a*stump*a ".jtw"))a

182 aaaaaaaaaaaaaaaaaaaaa(setqalinea1)a

183 aaaaaaaaaaaaaaaaaaaaa(goto-chara(point-min))a

184 aaaaaaaaaaaaaaaaaaaaa(forward-linea2)a

185 aaaaaaaaaaaaaaaaaaaaa(point)a

186 aaaaaaaaaaaaaaaaaaaaa)))a

187 aaaaaaaaaaa(setqalinea(+alinea(count-linesap-priora(point))))a

188 aaaaaaaaaaa(decfaline)a

189 aaaaaaaaaaa(decfaline)a

190 aaaaaaaaaaa(inserta(formata "//a%sa’%s\n" aaaaaaaaaaaaaaaaaa*list-

namespace*a(prin1-to-stringafile-stack)))a

191 aaaaaaaaaaa(inserta(formata "//a%s#location3a(%s:%d)\n" aaaa*pp-

namespace*aaafilealine))a

192 aaaaaaaaaaa(inserta(concata "fora(vara" aTa "a" avara "a=a" athis starta ";" a

193 aaaaaaaaaaaaaaaaaaaaaaaaaaa "a((" athis step sizea "a>a0)a?a" avara "a<=a" a

194 aaaaaaaaaaaaaaaaaaaaaaaaaaathis stopa "a:a" avara "a>=a" athis stopa ");a" a

195 aaaaaaaaaaaaaaaaaaaaaaaaaaavara "a+=a" athis step sizea ")"))a

196 aaaaaaaaaaa(ifastrobea(d-debuga "Pretendersa/aTheaWait"))a

197 aaaaaaaaaaa;;(d-debuga"YehudiaMenuhin")a

198 aaaaaaaaaaa)a;;a ENDaWHEN! a

199 aaaaaaaaa)aaa;;a ENDaWHEN! a

200 aaaaaaa)aaaaa;;a ENDaWHILE! a

201 aaaaa)aaaaaaa;;a ENDaSAVE-EXCURSION! a

202 aaa)aaaaaaaaa;;a ENDaLET! a

203 aa

204 aa

205 aa

;; END FILE: el/superfor.el

A bug in J.T.W. superfor

The question mark operator a ? b : c which expands to

001 type result;

002 if (a) then

003 begin

004 result = b;

005 end

006 else

007 begin

008 result = c;

009 end

where type can be any Java type directly supported by the arguments to the superfor macro
in J.T.W., namely char, short, int, long, float and double. Elsewhere the question mark is
supported. Instead in the superfor macro you have to write the following code to get a question
mark operator online:

2.7. PROOFS OF CONCEPT FOR THE J.T.W LANGUAGE 85

// BEGIN FILE: jtw-tutorials/SuperFor5.jtw

001 aclassaSuperFor5a
002 abegina
003 aaaabeginMaina
004 aaaaaaaSystem.out.println("WelcomeatoaSuperFor5.jtw");a

005 aaaaaaafoo(1,2);a

006 aaaaendMaina
007 aaaafunctionavoida foo (intax,aintay)a

008 aaaabegina
009 aaaaaaasuperfora(varaintai=0atoa(xa<ay)aQUESTa10a:a20))a

010 aaaaaaabegina
011 aaaaaaaaaaSystem.out.println("i=" a+ai);a

012 aaaaaaaenda
013 aaaaaaaSystem.out.println();a
014 aaaaenda
015 aenda
016 aa

// END FILE: jtw-tutorials/SuperFor5.jtw

where the symbol QUIST compiles into a question mark: ? When built, the program prints out
the following:

Welcome to file: SuperFor5.jtw

i=0

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

2.7.3 Proof of concept #3: File inclusion

When your classes become large and unwieldy, it becomes useful to split a source file into several
compilation units. The most natural division into compilation units is at the level of methods.
With each method in a separate file you can manage methods that are excessively large. Here
is how to use file inclusion in the J.T.W. language. First comes the *.jtw file with all bodies of
methods harvested from them:

001 class Foo

002 begin

003 include "apple.method"

004 include "banana.method"

005 include "carrot.method"

006 end

Here are the files that get included. The first file is apple.method:

001 property int prop; /* property for use with apple method */

002

003 method void apple (/* parameters */)

004 begin

86 CHAPTER 2. THE J.T.W. LANGUAGE

005 prop = prop + 1;

006 /* rest of body of apple method */

007 end

The second file is banana.method:

001 method void banana (/* parameters */)

002 begin

003 /* body of banana method */

004 end

The third file is carrot.method:

001 method void carrot (/* parameters */)

002 begin

003 /* body of carrot method */

004 end

When all of the file inclusions have been carried out by the J.T.W. to Java compiler, the code
that javac sees will be something like this:

001 /** Automatically generated file. Do not edit! */

002 // #foomatic #location (Foo.jtw:1)

003 class Foo

004 {
005 // #foomatic #location (apple.method:1)

006 int prop;

007

008 void apple (/* parameters */)

009 {
010 prop = prop + 1;

011 /* rest of body of apple method */

012 }
013 // #foomatic #location (banana.method:1)

014 void banana (/* parameters */)

015 {
016 /* body of banana method */

017 }
018 // #foomatic #location (carrot.method:1)

019 void carrot (/* parameters */)

020 {
021 /* body of carrot method */

022 }
023 // #foomatic #location (Foo.jtw:6)

024 }

Note the use of the value #foomatic of the string *pp-namespace* (where pp stands for pre-
processor) that is a long arbitrarily defined string to prevent accidental aliasing with the rest of
the commented code that the user of the system might write. The #location directives are used
to keep track of the original line number in the source file. Using Emacs batch mode executing the
Elisp code: jtw-build-java.el (see 2.13.1), error messages in Foo.java now point back to the

2.8. JAVA/J.T.W./C++ CODING PREFERENCES 87

original Foo.jtw file, or one of the files that get #included like so: apple.method, banana.method
or carrot.method.

NOTE: Version 1.0 of J.T.W. used the C Pre-Processor (C.P.P.) to manage the #location

directives but unfortunately C.P.P. destroys comments in the target file, and Java uses /** . . .
*/ comments to document the program’s behaviour so C.P.P. cannot be used.

2.8 Java/J.T.W./C++ coding preferences

Many a religious war has been fought over coding preferences, how code should be named and
indented. I started programming when I was 5 years old in 1978 so over my years as a computer
programmer I have gravitated to the following coding preferences. Here I present them to you now,
and I also explain their rationale so that their use is not mindlessly following my own religious ideas
but rather practical conventions for improving the readability of program code. The recommended
preferences for indenting J.T.W. code is as follows:

001 begin

002 /* code goes here */

003 begin

004 /* code goes here */

005 begin

006 /* code goes here */

007 end

008 /* code goes here */

009 end

010 /* code goes here */

011 end

In Emacs you can get the above indentation online by putting the following command in your
~/.emacs file, where ˜ is an abbreviation for the contents of your HOME environment variable.

(setq c-basic-offset 3)

instead of:

begin begin /* code goes here */ end begin /* code goes here */ end end

or similar coding styles. The rationale for placing ends in equal alignment with begins is so that
even on long lines, the begin and end symbol are not truncated away from view, unless you are
not looking at column zero, which is a rare event, or you have a pathologically deep level of nesting
of your squigglies (curly braces) i.e. more than screen width divided by tab width = 80 / 3 = 26
on my system. Note that in Emacs, screen-width is a function and tab-width is a variable so
you can calculate this value in your version of Emacs by evaluating the following code:

(/ (screen-width) tab-width).

In Emacs activate Control-x Control-e at the end of the above Lisp form to execute that code.
The only place where this falls down is where you have excessively long lines which are ugly no
matter how your editor chooses to display them. In Emacs the variable truncate-lines can
either be set to t in which long lines keep the screen scrolling to the right hand side of the screen.
When nil the lines wrap around inside the visible window of the screen. Both approaches look
ugly in my opinion. Luckily the programmer is able to reformat their code so that excessively long
lines do not occur. This coding preference for J.T.W. code translates into the following preference
for Java and C/C++ code:

88 CHAPTER 2. THE J.T.W. LANGUAGE

001 {
002 /* code goes here */

003 {
004 /* code goes here */

005 {
006 /* code goes here */

007 }
008 /* code goes here */

009 }
010 /* code goes here */

011 }

The much maligned Hungarian Notation is recommended so that syntax highlighting can be ap-
plied to keywords. The term “Hungarian Notation” comes from the fact that under the worst
instances of Hungarian notation such as m piMax your code looks as indecipherable as the Hungar-
ian language is to Westerners. In Hungarian notation, private propertys and methods should
be named with a preceding underscore like so: foo or something similar like private foo .

The famous book Design Patterns by [GRHV95] uses an underscore at the beginning of a word
to indicate that that variable is private. The following Elisp code can allow private propertys
to be highlighted in a different color from the rest of your code:

;; BEGIN FILE: ˜/dlisp/d-flock-private.el;; END FILE: ˜/dlisp/d-flock-private.el

Simply place this code into your file .emacs in your HOME directory and run Emacs to activate this
syntax highlighting feature. If such a file does not exist, it will be necessary to create one.
Java and J.T.W. conventionally name variables in “caMeL” case, i.e. component words con-
catenated together and using uppercase letters to delimit the sub-words of a given expression.
Examples are like so: setFoo() and getFoo(). In C and C++ symbols are conventionally named
with underscores like so: set foo() and get foo(). If you follow these conventions, your code
will be easier to read by the large number of other programmers who follow these conventions.

2.9 Parenthesis and squigglies { . . . } instead of begin . . .
end

It is sometimes said that Lisp stands for Lots of Irritating Superfluous Parentheses. But in reality
Lisp is for the expert coder who prefers their programming to be deeply nested. In the same vein,
going from BASIC to Java involves getting used to squigglies { ... } all over the place. The
Basic coder will soon find that { ... } operators are a useful tool for managing the complexity
of a program. While learning a program language for the first time however, the programmer will
like as much help as the compiler can give you, which includes supporting the begin and end
constructs.

2.10 Troubleshooting J.T.W. code

The Elisp file jtw-build-java.el (see 2.13.1) contains code for GNU Emacs to parse and trou-
bleshoot problematic J.T.W. code. The following errors produce a diagnostic:

• Error 1: method needs a return type.

• Error 2: function needs a return type.

• Error 3: constructors need the correct class name.

2.10. TROUBLESHOOTING J.T.W. CODE 89

• Errors 5-13: Cannot have more than one of property, classVar, function, method or
constructor on the same line.

• Error 14: This line needs one of the following keywords: function, method, classVar,
property or constructor.

• Error 15: Functions cannot reside inside functions/methods/constructors.

• Error 16: Function must have begin on the following line.

• Error 17: Constructors cannot reside inside functions/methods/constructors.

• Error 18: constructor must have begin on the following line.

• Error 19: Methods cannot reside inside functions/methods/constructors.

• Error 20: Method must have begin on the following line.

• Error 21: Property must not have begin on the following line.

• Error 22: Class variable must not have begin on the following line.

• Error 23: Expecting (after if statement.

• Error 24: Unbalanced parentheses after if statement.

• Error 25: Expecting then keyword after if statement.

• Error 26: More ends than begins.

• Error 27: Missing ends at the end of the file.

• Error 28: Spurious semicolon at the end of the line.

• Error 29: Cannot call a method without an object from the main function.

• Error 30: Cannot call a method with a class name prefix from the main function.

• Error 31: Cannot call a method without an object from a function.

• Error 32: Cannot call a method with a class name prefix from a function.

• Error 33: Cannot call a method without an object from a method.

• Error 34: Cannot call a method without an object from a constructor.

• Error 35: Keyword var missing.

• Error 36: Keyword var does not belong here.

• Error 37: argument type to superfor macro must be one of char/short/int/long/float/double.

• Error 38: function outside of a class.

• Error 39: method outside of a class.

• Error 40: property outside of a class.

• Error 41: Class variable outside of a class.

• Error 42: Cannot have a function inside an interface.

• Error 44: Class X has no function named foo.

90 CHAPTER 2. THE J.T.W. LANGUAGE

• Error 45: Class X has no classVar named foo.

• Error 46: Function Foo.bar() not found.

• Error 47: ClassVar Foo.classVar not found.

• Error 48: Infinite loop in include directives.

• Error 49: class X has multiple instances.

2.11 Mapping from J.T.W. to Java

The J.T.W. language maps to the Java language in a natural and straightforward way, making it
easy to learn Java, once you know the J.T.W.language. Here is the actual mapping of keywords
from J.T.W. to Java:

function → static
var → nothing
classVar → static
property → nothing
method → nothing
constructor → nothing
begin → {
end → }
beginMain → public static void main (String args) {
endMain → }
and → &&

or → ||

then → nothing
elseif → else if

2.11.1 Choosing a preprocessor language for J.T.W.

Note that these J.T.W. keywords on the left hand side of the above diagram should not map to
their Java equivalents inside strings and comments. The transformation was originally written
to use the m4 language to map J.T.W. onto Java but this approach had the disadvantage that
keywords like begin and end inside strings were mapped to their Java equivalents like so:

001 System.out.println("function"); → System.out.println("static");

002 System.out.println("var"); → System.out.println("");

003 System.out.println("classVar"); → System.out.println("static");

004 System.out.println("property"); → System.out.println("");

005 System.out.println("method"); → System.out.println("");

006 System.out.println("constructor"); → System.out.println("");

007 System.out.println("begin"); → System.out.println("{");

008 System.out.println("end"); → System.out.println("}");

009 System.out.println("beginMain"); → System.out.println("public static void main(String[] args) {");

010 System.out.println("endMain"); → System.out.println("}");

011 System.out.println("and"); → System.out.println("&&");

012 System.out.println("or"); → System.out.println("||");

013 System.out.println("then"); → System.out.println("");

014 System.out.println("elseif"); → System.out.println("else if");

which is of course the wrong behaviour. A hack to get around this limitation is to break apart the
J.T.W. keywords like so:

2.11. MAPPING FROM J.T.W. TO JAVA 91

System.out.println("be" + "gin");

This problem can be fixed for good either by using Flex to compile J.T.W. into Java or to use
Emacs to do the same thing, only a little slower than what Flex can do. In the end I chose GNU
Emacs as the host for the preprocessor language J.T.W. because it is free software and is adequate
for my programming needs and is more powerful than Flex or m4. To remedy this deficiency
Emacs’ batch mode is used to do the transformation from J.T.W. to Java. This implies that GNU
Emacs must be present on the client’s system to do the J.T.W. to Java mapping. Of course, there
is no compulsion to use Emacs as an editor, although there are a couple of advantages in doing
this. Number one is that J.T.W. keywords, comments and strings have syntax highlighting .
And number two is that Emacs can do correct automatic indentation of J.T.W. code.

2.11.2 Piping the output of javac and java

Output from the executables javac and java have their standard output stream and error stream
piped into Emacs’ batch mode so that error messages like Foo.java:123 point back to the correct
file even if file inclusion (see §2.7.3) has been used. The programs grep and sed are also used as
pipes in the transformation process so they must be present on the client’s system.

2.11.3 The GNU Makefile for building *.java files and *.class files

Here is the Makefile that is used to build *.java files from *.jtw files and *.class files from
*.java files and finally executing *.class files:

.PRECIOUS:

.PRECIOUS: %.java %.class

JAVAC FLAGS = -source 1.5 -Xlint:unchecked -Xlint:deprecation -Xlint:-options

JAVA FLAGS = -enableassertions

SHELL = /bin/bash

PREFIX = /usr/

TELEPHONE = telephone-1800-NEW-FUNK

build-class-db:

@echo "* Stage 0 : Building class database"

emacs --batch --eval "(setq dir \"$(PREFIX)/share/emacs/site-lisp/dlisp/\")" \
--load $(PREFIX)/share/emacs/site-lisp/dlisp/jtw-build-class-db.el --funcall doit

%.java : %.jtw

@echo "* Stage 1 : Debugging $*.jtw and building $*.java file" \

emacs --batch --eval "(setq *stump* \"$*\")" \
--load $(PREFIX)/share/emacs/site-lisp/dlisp/jtw-build-java.el \
--funcall doit

%.class: %.java

@echo "* Stage 2 : Debugging *.java file(s) and building *.class file(s)"

javac $(JAVAC FLAGS) $$(find . -name "*.java") |& emacs --batch \
--load $(PREFIX)/share/emacs/site-lisp/dlisp/jtw-javac.el --funcall doit |& \
grep "#$(TELEPHONE) input[0-9]:" - |& sed -e "s/\#$(TELEPHONE) input[0-9]://g" -

%.run: %.class

@echo "* Stage 3 : Running $*.class file"

java $(JAVA FLAGS) $* |& emacs --batch \
--load $(PREFIX)/share/emacs/site-lisp/dlisp/jtw-java.el --funcall doit \
|& grep "#$(TELEPHONE) input[0-9]*:" - |& sed -e "s/\#$(TELEPHONE) input[0-9]*://g" -

clean: build-class-db

92 CHAPTER 2. THE J.T.W. LANGUAGE

rm -fv $$(find . -name "*.java")

rm -fv $$(find . -name "*.class")

build: clean

The first line .PRECIOUS without any arguments clears the list of precious files, the list of files
not to delete during the build process.

2.12 Elisp code for editing *.jtw files

This following Elisp file $(PREFIX)/share/emacs/site-lisp/dlisp/jtw-mode.el gives you syn-

tax highlighting of J.T.W. constructs and correct indentation of J.T.W. code.

;; BEGIN FILE: ˜/dlisp/d-make-face.book.el

001 a;;a(d-make-facea’red-facea(setqabgcolorabg-colour)a"red"a:bold)a

002 a(defmacroa d-make-face a(fontabgcolorafgcolora&restarest)a

003 aaa;;(d-debuga"Queena/aAnotheraoneabitesatheadust")a

004 aaa(d-asserta(symbolpa’font))a

005 aaa(d-asserta(ifa(boundpa’font)a
006 aaaaaaaaaaaaaaaaa(symbolpa’font)a

007 aaaaaaaaaaaaaaat))a

008 aaa;;(d-debuga"Calamansi")a

009 aaa(leta(pawas-errora
010 aaaaaaaaaaaboldaunbolda

011 aaaaaaaaaaaitalicaunitalica

012 aaaaaaaaaaaunderlineaununderline)a

013 aaaaa;;(d-debuga"TheaShapeaofaJazzatoaComea/aChronology")a

014 aaaaa;;(d-debuga"Queena/aFataBottomedaGirls")a

015 aaaaa(setqabgcolora(evalabgcolor))a

016 aaaaa(setqafgcolora(evalafgcolor))a

017 aaaaa;;(messagea"bgcolor=%safgcolor=%s"abgcolorafgcolor)a

018 aaaaa;;(progna(setqabgcolora"#ffffff")a(setqafgcolora"#000")a(setqafonta’fg:white))a

019 aaaaa(setqapa‘(progna
020 aaaaaaaaaaaaaaaa(ifa(nota(eqa’fonta’default))a
021 aaaaaaaaaaaaaaaaaaaa(kill-local-variablea(quotea,afont)))a

022 aaaaaaaaaaaaaaaa(setqa,afonta(quotea,afont))a

023 aaaaaaaaaaaaaaaa(make-facea(quotea,afont))a

024 aaaaaaaaaaaaaaaa(set-face-backgrounda(quotea,afont)a,abgcolor)a

025 aaaaaaaaaaaaaaaa(set-face-foregrounda(quotea,afont)a,afgcolor)))a

026 aaaaa(setqaptrarest)a
027 aaaaa;;(d-debuga"TheaShapeaofaJazzatoaComea/aCongeniality")a

028 aaaaa(whileaptra
029 aaaaaaa(conda

030 aaaaaaaa((ora(nullaaaa(caraptr))a
031 aaaaaaaaaaaaa(stringpa(caraptr)))a
032 aaaaaaaaa)a

033 aaaaaaaa;;a--a

034 aaaaaaaa((ora(eqa(caraptr)a:bold)a(eqa(caraptr)a:unbold))a
035 aaaaaaaaa(ifa(eqa(caraptr)a:bold)a
036 aaaaaaaaaaaaa(setqaboldat))a

037 aaaaaaaaa(ifa(eqa(caraptr)a:unbold)a
038 aaaaaaaaaaaaa(setqaunboldat))a

039 aaaaaaaaa(whena(andaboldaunbold)a
040 aaaaaaaaaaa(setqawas-errora(concata

041 aaaaaaaaaaaaaaaaaaaaaaaaaaaawas-errora

042 aaaaaaaaaaaaaaaaaaaaaaaaaaaa "Bothasymbolsashouldanotabeadefined:a:boldaanda:unbold,")))a

043 aaaaaaaaa(ifabolda
044 aaaaaaaaaaaaa(setqapa‘(progna
045 aaaaaaaaaaaaaaaaaaaaaaaa,apa

046 aaaaaaaaaaaaaaaaaaaaaaaaaa(make-face-bolda(quotea,afont)))))a

047 aaaaaaaaa(ifaunbolda
048 aaaaaaaaaaaaa(setqapa‘(progna

2.12. ELISP CODE FOR EDITING *.JTW FILES 93

049 aaaaaaaaaaaaaaaaaaaaaaaa,apa

050 aaaaaaaaaaaaaaaaaaaaaaaaaa(make-face-unbolda(quotea,afont))))a

051 aaaaaaaaaaa))a

052 aaaaaaaa;;a--a

053 aaaaaaaa((ora(eqa(caraptr)a:italic)a(eqa(caraptr)a:unitalic))a
054 aaaaaaaaa(ifa(eqa(caraptr)a:italic)a
055 aaaaaaaaaaaaa(setqaitalicat))a

056 aaaaaaaaa(ifa(eqa(caraptr)a:unitalic)a
057 aaaaaaaaaaaaa(setqaunitalicat))a

058 aaaaaaaaa(whena(andaitalicaunitalic)a
059 aaaaaaaaaaa(setqawas-errora(concata

060 aaaaaaaaaaaaaaaaaaaaaaaaaaaawas-errora

061 aaaaaaaaaaaaaaaaaaaaaaaaaaaa "Bothasymbolsashouldanotabeadefined:a:italicaanda:unitalic,")))a

062 aaaaaaaaa(ifaitalica
063 aaaaaaaaaaaaa(setqapa‘(progna
064 aaaaaaaaaaaaaaaaaaaaaaaa,apa

065 aaaaaaaaaaaaaaaaaaaaaaaaaa(make-face-italica(quotea,afont)))))a

066 aaaaaaaaa(ifaunitalica
067 aaaaaaaaaaaaa(setqapa‘(progna
068 aaaaaaaaaaaaaaaaaaaaaaaa,apa

069 aaaaaaaaaaaaaaaaaaaaaaaaaa(make-face-unitalica(quotea,afont))))a

070 aaaaaaaaaaa))a

071 aaaaaaaa;;a--a

072 aaaaaaaa((ora(eqa(caraptr)a:underline)a(eqa(caraptr)a:ununderline))a
073 aaaaaaaaa(whena(eqa(caraptr)a:underline)a
074 aaaaaaaaaaa(setqau-or-uuaaat)a

075 aaaaaaaaaaa(setqaunderlineat))a

076 aaaaaaaaa(whena(eqa(caraptr)a:ununderline)a
077 aaaaaaaaaaa(setqau-or-uuanil)a

078 aaaaaaaaaaa(setqaununderlineat))a

079 aaaaaaaaa(whena(andaunderlineaununderline)a
080 aaaaaaaaaaa(setqawas-errora(concata

081 aaaaaaaaaaaaaaaaaaaaaaaaaaaawas-errora

082 aaaaaaaaaaaaaaaaaaaaaaaaaaaa "Bothasymbolsashouldanotabeadefined:a:underlineaanda:ununderline,")))a

083 aaaaaaaaa(setqapa‘(progna
084 aaaaaaaaaaaaaaaaaaaa,apa

085 aaaaaaaaaaaaaaaaaaaaaa(set-face-underlinea(quotea,afont)au-or-uu))))a

086 aaaaaaaa;;a--a

087 aaaaaaaa(ta;;a(setqawas-errora"Schmu")a

088 aaaaaaaaa;;(d-debuga"Calamansi")a

089 aaaaaaaaa(ifa(nota(caraptr))a
090 aaaaaaaaaaaaa(debug))a

091 aaaaaaaaa(setqawas-errora(formata "%s,aFOO!aunrecognisedasymbol:a%s" a

092 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaawas-errora

093 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(caraptr)))a

094 aaaaaaaaa(errora(formata "%saUnrecognisedakeyworda%s" awas-errora(caraptr))))a

095 aaaaaaaa)a

096 aaaaaaa(setqaptra(cdraptr)))a;;aendaWHILE!aptra
097 aaaaa;;a--a

098 aaaaa(ifawas-errora
099 aaaaaaaaa(d-errora(concatawas-errora "ainamacroad-make-face."))a

100 aaaaaaa)a

101 aaaaap)a

102 aaa)a

103 a;;a(d-amiga-colora(setqargb-componentsa"#fff"))a

104 a(defuna d-amiga-color a(rgb-components)a

105 aaa"AllowsaforaentryaintoatheaAmigaacolour-spaceawitha12abitsaofa

106 aaacolouraforaaatotalaofa4096adifferentacolours."a

107 aaa(conda

108 aaaa((=a(lengthargb-components)a7)a

109 aaaaargb-components)a

110 aaaa((=a(lengthargb-components)a4)a

111 aaaaa(leta(ragab)a
112 aaaaaaa(setqara(substringargb-componentsa1a2))a

113 aaaaaaa(setqaga(substringargb-componentsa2a3))a

114 aaaaaaa(setqaba(substringargb-componentsa3a4))a

94 CHAPTER 2. THE J.T.W. LANGUAGE

115 aaaaaaa(setqargb-componentsa(concata "#" araragagabab))a

116 aaaaaaa))))a

117 aa

118 a(defuna d-font-lock-add-begin a(keywords)a

119 aaa(ifa(fboundpa’font-lock-add-keywords)a
120 aaaaaaa(font-lock-add-keywordsanilakeywordsanil)a

121 aaaaa(setqafont-lock-keywordsa

122 aaaaaaaaaaa(appenda

123 aaaaaaaaaaaakeywordsa

124 aaaaaaaaaaaafont-lock-keywords))))a

125 aa

126 a(defuna d-font-lock-add-end a(keywords)a

127 aaa(ifa(fboundpa’font-lock-add-keywords)a
128 aaaaaaa(font-lock-add-keywordsanilakeywordsa’end)a

129 aaaaa(setqafont-lock-keywordsa

130 aaaaaaaaaaa(appenda

131 aaaaaaaaaaaafont-lock-keywordsa

132 aaaaaaaaaaaakeywords))))a

133 aa

134 a(progna
135 aaa(kill-local-variablea’nil)a

136 aaa(kill-local-variablea’prefs-bg-black-p)a

137 aaa(kill-local-variablea’bg-colour-inverted)a

138 aaa(setqabg-colouraaaaaa "#000")a

139 aaa(setqaprefs-bg-black-paaat)a

140 aaa(safe-requirea’rgb-inverted)a
141 aaa(setqabg-colour-inverteda(rgb-invertedabg-colour))a

142 aaa)a

143 aa

144 a;;aordinaryacommenta

145 a;;;asuperacommenta
146 a;;(d-beepsa"Insidead-make-face-1")a

147 a(d-make-faceafont-lock-comment-facea;;a TRUCKaME! a

148 aaaaaaaaaaaaaanila

149 aaaaaaaaaaaaaa(ifaprefs-bg-black-pa "#88ff88" a "#070")a

150 aaaaaaaaaaaaaa:italic)a

151 a(d-make-faceaboldanilabg-colour-inverteda:bold)a
152 a(d-make-facead-face-el-d-stuff-2a
153 aaaaaaaaaaaaaanila

154 aaaaaaaaaaaaaa(ifaprefs-bg-black-pa

155 aaaaaaaaaaaaaaaaaa "#fff" a "#88c")a

156 aaaaaaaaaaaaaa:bold)a

157 a(d-make-faceafont-lock-keyword-facea
158 aaaaaaaaaaaaaanila

159 aaaaaaaaaaaaaa(ifaprefs-bg-black-pa "#fff" a "#000")a

160 aaaaaaaaaaaaaa:bold)a

161 a(d-make-facead-face-super-commenta
162 aaaaaaaaaaaaaanila

163 aaaaaaaaaaaaaa(ifaprefs-bg-black-pa "#e44" a "#f00")a

164 aaaaaaaaaaaaaa:italica:bold)a

165 aaaaa;;;aadksajdjka
166 a(d-make-faceafont-lock-constant-faceanila "#f00" a:bold)a

167 aa

168 a;;(ifaabc)a

169 a;;aaaaaaappleaisainatheacommentafacea

170 a "aIaamainastringaface...a" a

171 a "aaaaaappleaaaaa" a

172 a(d-make-faceafont-lock-type-faceanila "#88f" a:bold)a

173 a(d-make-faceafont-lock-variable-name-facea
174 aaaaaaaaaaaaaanila

175 aaaaaaaaaaaaaa(ifaprefs-bg-black-pa "#f8f" a "#8800ff")a

176 aaaaaaaaaaaaaa:unbolda

177 aaaaaaaaaaaaaa:unitalic)a

178 a(d-make-faceafont-lock-function-name-facea

2.12. ELISP CODE FOR EDITING *.JTW FILES 95

179 aaaaaaaaaaaaaa(ifaprefs-bg-black-pa

180 aaaaaaaaaaaaaaaaaa "#000000" a "#ffff00")a

181 aaaaaaaaaaaaaa(ifaprefs-bg-black-pa

182 aaaaaaaaaaaaaaaaaa "#ffff00" a "#000000")a

183 aaaaaaaaaaaaaa:bold)a

184 a(d-make-faceafont-lock-doc-faceanila "#ff0000" a:bolda:italic)a

185 a;;(messagea"***ad-make-face-1afont-lock-doc-faceabg-colour=%s"abg-colour)a

186 a(d-make-faceadd-faceanila "#00f")a

187 aa

188 a(progna
189 aaa(d-make-faceadired-markedaa "#9999ff" a "#ffffff")a

190 aaa(d-make-faceadired-flaggeda "#ff9999" a "#ffffff")a

191 aaa)a

192 aa

193 a(progna
194 aaa(d-make-facead-face-cc-digitsanila "#f0f" a:bold)a

195 aaa(d-make-facead-face-defmacroanila "#f80" aa:bold)a

196 aaa)a

197 aa

198 a(progna
199 aaa(d-make-facearedb-faceanila "#f00" a:bold)a

200 aaa(d-make-faceagrnb-faceanila "#0c0" a:bold)a

201 aaa(d-make-faceablub-faceanila "#00f" a:bold)a

202 aaa)a

203 a(progna
204 aaa(d-make-faceared-faceanila "#f00" a:bold)a

205 aaa(d-make-faceagrn-faceanila "#0c0" a:bold)a

206 aaa(d-make-faceablu-faceanila "#66f" a:bold)a

207 aaa)a

208 a(d-make-faceafont-lock-string-facea

209 aaaaaaaaaaaaaa(ifaprefs-bg-black-pa "#88f" a(d-amiga-colora "#ddf"))a

210 aaaaaaaaaaaaaa(ifaprefs-bg-black-pa "#fff" a "#000")a

211 aaaaaaaaaaaaaa)a

212 a "aIaamaaastringainafont-lock-string-face...a" a

213 a(d-make-facead-face-el-d-stuffaaanila(ifaprefs-bg-black-pa "#66f" a "#00f")a:bold)a

214 a(d-make-facead-face-el-quoteaaaaanila(ifaprefs-bg-black-pa "#8f8" a "#0a0")a:bold)a

215 a(d-make-faceabg:yellowa

216 aaaaaaaaaaaaaa(ifaprefs-bg-black-panila "#ffff00")a

217 aaaaaaaaaaaaaa(ifaprefs-bg-black-pa "#ffff00" a "#000")a

218 aaaaaaaaaaaaaa:bold)a

219 a(d-make-facead-face-pathaaaaaanila "#0c0")a

220 a(d-make-facead-face-makefile-spacea "#f0f" a "#fff")a

221 a(d-make-facead-face-cc-globalanila(ifaprefs-bg-black-pa "#0c0" a "#0c0")a:bold)a

222 a(d-make-faceafg:lightgreenanila "#080")a

223 a(d-make-facead-face-cc-debugginga "#f0f" a "white")a

224 a(d-make-faceafg:whiteabg-colour-lighterabg-colour-inverteda:bold)a

225 a(d-make-facead-face-pathanila "#080")a

226 a(d-make-facead-face-cc-digitsanila "#f0f")a

227 a(d-make-facead-face-propertyanila "#f80")a

228 a(d-make-facead-face-property-inversea "#f80" anil)a

229 a(d-make-facead-face-m4a "#f44" a "#fff")a

230 a(d-make-facead-face-makefile-spaceanila "#f00")a

231 a(d-make-faceabg:yellowanila(d-amiga-colora "#ff0"))a

232 a(d-make-faceabg:lightmagentaa "#f0f" a "white" a:bold)a

233 a(d-make-faceabg:lightredaaaaa "#f00" a "white" a:bold)a

96 CHAPTER 2. THE J.T.W. LANGUAGE

234 a(d-make-faceabg:lightgreenaaa "#0f0" a "white" a:bold)a

235 a(d-make-faceabg:lightblueaaaa "#00f" a "lightblue" a:bold)a

236 a;;(d-make-faceafg:whitea"white"a"black"a:bold)a

237 a(d-make-faceafg:redanila "#f00" a:bold)a

238 a;;(d-make-faceafg:redanila(rgb-invertanil)a:bold)a

239 a(d-make-facead-face-m5a "#080" a "#fff" a:bold)a

240 a(d-make-facead-face-cc-debuga "#080" a "#fff" a:bold)a

241 a(d-make-faceablu-faceanila "#00f" a:bold)a

242 a(d-make-facealisp++-face-keywordsanila "#00f" a:bold)a

243 a(d-make-facead-debug-faceaaaaaanila "#f0f" a:bold)a

244 a(d-make-facead-checkpoint-faceanila "#404" a:bold)a

245 a(d-make-facealisp++-face-illegal-typea "#0ff" a "#f0f" a:bold)a

;; END FILE: ˜/dlisp/d-make-face.book.el

;; BEGIN FILE: ˜/dlisp/jtw-mode.el
001 aa

002 a;;;ajtw-mode.ela—aAanewamajoramodeaforaeditinga*.jtwafilesa
003 aa
004 a;;aCopyrighta(C)a2016aDavinaPearsona

005 aa

006 a;;aMaintainer:aDavinaMaxaPearsona<http://davin.50webs.com>a

007 a;;aKeywords:aJavaaTrainingaWheelsamajoramodea

008 a;;aVersion:a2.0a

009 aa

010 a;;;aCommentary:a
011 aa
012 a;;aThisaprogramaisapartaofaGNUaJavaaTrainingaWheels.a

013 aa

014 a;;;a m4 limitation of warranty a

015 aa
016 a;;;aCode:a
017 aa
018 a(messagea "Welcomeatoafile:ajtw-mode.el")a

019 aa

020 a(requirea’cl)a
021 aa

022 a(setqa*prefix*adefault-directory)a
023 aa

024 a(whena(nota(fboundpa’d-emergency-set-load-path))a

025 aaa(defuna d-emergency-set-load-path a()a

026 aaaaa(d-asserta(boundpa’*prefix*))a
027 aaaaa(d-asserta*prefix*)a

028 aaaaa(setqaload-patha(consa(expand-file-namea(concata*prefix*a "/../dlisp/"))a

029 aaaaaaaaaaaaaaaaaaaaaaaaaaaload-path))a

030 aaaaa(messagea "**ajtw-mode.ela(caraload-path)=%s" a(caraload-path))))a

031 aa

032 a(d-emergency-set-load-path)a
033 aa

034 a(requirea’early-bindings)a
035 aa

036 a(defvarajtw-mode-syntax-table)a
037 aa

038 a(defvarajtw-mode-mapa(make-keymap))a
039 aa

040 a(setqaauto-mode-alista(consa’("\\.jtw$" a.ajtw-mode)aauto-mode-alist))a

041 aa

042 a(add-hooka’font-lock-mode-hooka’d-jtw-font-lock-mode-hook–posta’APPEND)a
043 aa

044 a(defuna cull-from-list a(cull-mealist)a

045 aaa(leta(ptr)a
046 aaaaa(setqaptralist)a
047 aaaaa(whileaptra

2.12. ELISP CODE FOR EDITING *.JTW FILES 97

048 aaaaaaa(whena(equalacull-mea(caraptr))a
049 aaaaaaaaa(setqalista(cdraptr))a
050 aaaaaaaaa(setqaptraanil)a
051 aaaaaaaaa)a

052 aaaaaaa(setqaptra(cdraptr)))a
053 aaaaalist))a

054 aa

055 a(defuna d-jtw-font-lock-mode-hook–post a()a

056 aaa(ifa(eqamajor-modea’jtw-mode)a
057 aaaaaaa(d-font-lock-add-enda
058 aaaaaaaa’(a

059 aaaaaaaaaa("^[a\t]*\\(//.*$\\)" a1a’font-lock-comment-faceat)))))a

060 aa

061 a(defvara*elaborate-jtw*ata
062 aaa "Whetheraoranotatoaturnaonabuggyajava-modeasyntaxahighlighting")a

063 aa

064 a(defuna jtw-mode a()a

065 aaa(interactive)a

066 aaa;;(html-mode)a

067 aaa;;(ifa*elaborate-jtw*a

068 aaa(java-mode)a

069 aaa(setqamajor-modea’jtw-mode)a

070 aaa(setqamode-namea "JTW")a

071 aaa(seta(make-local-variablea’jtw-mode-syntax-table)a
072 aaaaaaaa(copy-syntax-tableajava-mode-syntax-table))a

073 aaa(set-syntax-tableajtw-mode-syntax-table)a
074 aaa(progna
075 aaaaa(modify-syntax-entrya? a "w")a

076 aaaaa(modify-syntax-entrya?<a "(>")a

077 aaaaa(modify-syntax-entrya?>a ")<")a

078 aaaaa)a

079 aaa(use-local-mapajtw-mode-map)a

080 aaa(local-set-keya "\t" aaaaaaaaaaaaaaaa’jtw–indent-line)a

081 aaa(progna

082 aaaaa(local-set-keya "\C-m" aaaaaaaaaaaaaa’d-indent-new-comment-line)a

083 aaaaa(local-set-keya "\C-r" aaaaaaaaaaaaaa’d-indent-new-comment-line)a

084 aaaaa)a

085 aaa(local-set-keya[(metaacontrola\\)]a’jtw–meta-control-backslash)a

086 aaa(local-set-keya "\C-c\C-c" aaaaaaaaaa’d-cc–comment-region)a

087 aaa(abbrev-modea1)a

088 aaa(setqalocal-abbrev-tableajava-mode-abbrev-table)a

089 aaa(make-local-variablea’font-lock-keywords)a

090 aaa(make-local-variablea’c-basic-offset)a

091 aaa(setqac-basic-offseta3)a

092 aaa(font-lock-modea1)a

093 aaa(font-lock-fontify-buffer)a

094 aaa;;(setqafont-lock-keywordsanil)a

095 aaa;;;a NOTE: atheafollowingacodeaaddsasyntaxahighlightingaofa/**a...a*/ajavadocacommentsa

096 aaa(whena*elaborate-jtw*a
097 aaaaa(setqafont-lock-keywordsa(cull-from-lista

098 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’("\\<\\(@[a-zA-Z0-9]+\\)\\>" a(1ac-annotation-face))a

099 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaafont-lock-keywords))a

100 aaaaa(seta(kill-local-variablea’global-font-lock-keywords)afont-lock-keywords)a

101 aaaaa(with-temp-buffera
102 aaaaaaa(emacs-lisp-mode)a

103 aaaaaaa(kill-local-variablea’global-font-lock-keywords)a

104 aaaaaaa(insert-prin1a’(setqaglobal-font-lock-keywordsa

105 aaaaaaaaaaaaaaaaaaaaaaaaaaaa(appendaglobal-font-lock-keywordsa

106 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’(c-font-lock-complex-decl-preparea

107 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(#[(limit)a

108 aaasexy-stringa

109 aaa[limitajavadoc-font-lock-doc-commentsac-font-lock-doc-commentsa "/**"]a

98 CHAPTER 2. THE J.T.W. LANGUAGE

110 aaa4])))))a

111 aaaaaaa(goto-chara(point-min))a

112 aaaaaaa(d-asserta(re-search-forwarda "\\<sexy-string\\>" anilat))a

113 aaaaaaa(replace-matcha(formata "\"\302\303%c%c#\207\"" a8a?\t)a’FIXEDCASEa’LITERAL)a
114 aaaaaaa(eval-buffer)a

115 aaaaaaa(setqafont-lock-keywordsaglobal-font-lock-keywords)a

116 aaaaaaa))a

117 aaa;;a NOTE: atheafollowingacodeaaddsafonticationaofaJ.T.W.akeywordsa

118 aaa(whena*elaborate-jtw*a
119 aaaaa(d-font-lock-add-begina
120 aaaaaa‘(a

121 aaaaaaaa("\\(class\\)a\\([A-Z][a-zA-Z0-9]*\\)" a

122 aaaaaaaaa(1a’font-lock-keyword-faceanil)a

123 aaaaaaaaa(2a’font-lock-type-faceaaaat))a

124 aa

125 aaaaaaaa(,(concata "\\<\\([A-Z]+[a-z][A-Za-z0-9]*\\|[A-Z]\\|void\\|boolean\\|" a

126 aaaaaaaaaaaaaaaaaa "char\\|int\\|long\\|short\\|float\\|double\\)" a

127 aaaaaaaaaaaaaaaaaa "[][]*[a\t]+\\([a-z][A-Za-z0-9]*\\)(")a

128 aaaaaaaaa(1a’font-lock-type-faceaaaaaaaaaanil)a

129 aaaaaaaaa(2a’font-lock-function-name-faceanil))a

130 aa

131 aaaaaaaa(,(concata "\\<\\([A-Z]+[a-z][A-Za-z0-9]*\\|[A-Z]\\|void\\|boolean\\|" a

132 aaaaaaaaaaaaaaaaaa "char\\|int\\|long\\|short\\|float\\|double\\)" a

133 aaaaaaaaaaaaaaaaaa "[][]*[a\t]+\\([a-z][A-Za-z0-9]*\\)a*[;=,)]")a

134 aaaaaaaaa(1a’font-lock-type-faceaaaaaaaaaanil)a

135 aaaaaaaaa(2a’font-lock-variable-name-faceanil))a

136 aa

137 aaaaaaaa(,(concata "\\<\\(d-assert\\|function\\|var\\|classVar\\|" a

138 aaaaaaaaaaaaaaaaaa "property\\|method\\|constructor\\|" a

139 aaaaaaaaaaaaaaaaaa "until\\|then\\|and\\|or\\|include\\)\\>")a

140 aaaaaaaaa(1afont-lock-keyword-faceanil))a

141 aa

142 aaaaaaaa("^\\(package\\)[a\t]+\\([a-z.]+\\);" a

143 aaaaaaaaa(1a’boldanil)a

144 aaaaaaaaa(2a’fg:lightredat))a

145 aa

146 aaaaaaaa("^\\(import\\)[a\t]+\\([a-z.]+\\)\\.*;" a

147 aaaaaaaaa(1a’boldanil)a

148 aaaaaaaaa(2a’fg:lightredat))a

149 aa

150 aaaaaaaa("\\<\\(begin\\)\\>" aaaaaaaaaaaaaaaaaaaaaaaaaaaaa0afont-lock-keyword-faceanil)a

151 aaaaaaaa("\\<\\(end\\)\\>" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa0afont-lock-keyword-faceanil)a

152 aaaaaaaa("\\<\\(beginMain\\)\\>" aaaaaaaaaaaaaaaaaaaaaaaaa0afont-lock-keyword-faceanil)a

153 aaaaaaaa("\\<\\(endMain\\)\\>" aaaaaaaaaaaaaaaaaaaaaaaaaaa0afont-lock-keyword-faceanil)a

154 aa

155 aaaaaaaa("\\<\\(System.out.print\\(ln\\)?\\)(" aaaaaaaaaaa1ad-face-cc-globalanil)a

156 aaaaaaaa("\\<\\(System.exit\\)(" aaaaaaaaaaaaaaaaaaaaaaaaa1ad-face-cc-globalanil)a

157 aaaaaaaa("\\<\\([a-z][A-Za-z0-9]*\\.printStackTrace\\)(" a1ad-face-cc-globalanil)a

158 aaaaaaaa("\\<\\(null\\|true\\|false\\)\\>" aaaaaaaaaaaaaaa1afont-lock-constant-faceanil)a

159 aa

160 aaaaaaaa(,(concata "\\<\\(abstract\\|break\\|byte\\|case\\|catch\\|" a

161 aaaaaaaaaaaaaaaaaa "const\\|continue\\|default\\|do\\|else\\|elseif\\|" a

162 aaaaaaaaaaaaaaaaaa "extends\\|final\\|finally\\|for\\|goto\\|if\\|" a

163 aaaaaaaaaaaaaaaaaa "implements\\|instanceof\\|interface\\|" a

164 aaaaaaaaaaaaaaaaaa "native\\|new\\|package\\|private\\|protected\\|" a

2.12. ELISP CODE FOR EDITING *.JTW FILES 99

165 aaaaaaaaaaaaaaaaaa "public\\|return\\|static\\|super\\|switch\\|" a

166 aaaaaaaaaaaaaaaaaa "synchronized\\|this\\|throw\\|throws\\|transient\\|" a

167 aaaaaaaaaaaaaaaaaa "superfor\\|downto\\|to\\|step\\|" a

168 aaaaaaaaaaaaaaaaaa "try\\|volatile\\|while\\)\\>")a

169 aaaaaaaaa1afont-lock-keyword-faceanil)a

170 aa

171 aaaaaaaa("\\(\\<\\|-\\)\\([0-9]+[.]\\)?[0-9]+\\([eE]-?[0-9]+\\)?" a

172 aaaaaaaaa0ad-face-cc-digitsanil)a
173 aa

174 aaaaaaaa("\\<b\\>" a0a’boldanil)a

175 aa

176 aaaaaaaa("\\<functiona[^a\t]*a\\([a-z][A-Za-z0-9]*\\)(" a

177 aaaaaaaaa1afont-lock-function-name-faceanil)a

178 aaaaaaaa("\\<methoda[^a\t]*a\\([a-z][A-Za-z0-9]*\\)(" a

179 aaaaaaaaa1afont-lock-function-name-faceanil)a

180 aa

181 aaaaaaaa("\\<\\(method\\|function\\)a\\([a-z][a-zA-Z0-9]*\\)(" a

182 aaaaaaaaa2afont-lock-function-name-faceanil)a

183 aa

184 aaaaaaaa("\\<[A-Z]+[a-z][A-Za-z0-9 <,>]*" aaa0a’font-lock-type-faceanil)a

185 aaaaaaaa("\\<[A-Z]\\>" aaaaaaaaaaaaaaaaaaaaaa0a’font-lock-type-faceanil)a

186 aaaaaaaa(,(concata "\\<\\(void\\|boolean\\|char\\|int\\|long\\|short\\|" a

187 aaaaaaaaaaaaaaaaaa "float\\|double\\)\\>")aaa0a’font-lock-type-faceanilat)a

188 aa

189 aaaaaaaa("\\< m4 [a-zA-Z0-9]*" aaaaaaaaaaaa0ad-face-m4at)a

190 aaaaaaaa(,(concata "\\(\\< m4 " a "dnl\\>\\)\\([^\r\n]*\\)$")a

191 aaaaaaaaa(1ad-face-m4-dnlat)a
192 aaaaaaaaa(2afont-lock-comment-faceat))a

193 aaaaaaaa("\\<\\(\\([a-z]+\\.\\)*\\)[A-Z][a-zA-Z0-9]*" a1a’fg:lightredanil)a

194 aa

195 aaaaaaaa("\\<\\(getter\\|setter\\)\\>" aaaaaaaaaaaaaaaaaaaaaaaaaaaa1a’d-face-

defmacroat)a

196 aaaaaaaa("\\<\\([a-zA-Z0-9]*[\\\\]? design[\\\\]? pattern\\)\\>" a1a’d-face-

defmacroat)a

197 aaaaaaaa("\\<\\(foreach\\)\\>" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa1a’d-face-

defmacroat)a
198 aa

199 aaaaaaaa)))a

200 aaa;;(font-lock-fontify-buffer)a

201 aaa)a

202 aa

203 a(defuna jtw–clamp-point a(newpoint)a

204 aaa(maxa(point-min)a(mina(point-max)anewpoint)))a

205 aa

206 a(defuna jtw–inside-comment-or-string a()a

207 aaa(save-match-dataa
208 aaaaa(leta((pa(get-char-propertya(jtw–clamp-pointa(1-a(point)))a’face)))a
209 aaaaaaa(ora(eqapa’font-lock-string-face)a

210 aaaaaaaaaaa(eqapa’font-lock-comment-face)a

211 aaaaaaaaaaa(eqapa’font-lock-doc-face)a

212 aaaaaaaaaaa(eqapa’font-lock-doc-string-face)a

213 aaaaaaaaaaa(eqapa’d-face-super-comment)a
214 aaaaaaaaaaa)))a

215 aaa)a

216 aa

217 a(defuna jtw–count-string a(string)a

218 aaa(save-excursiona
219 aaaaa(save-match-dataa
220 aaaaaaa(leta((maxa(point-at-eol))a

100 CHAPTER 2. THE J.T.W. LANGUAGE

221 aaaaaaaaaaaaa(counta0))a

222 aaaaaaaaa(beginning-of-line)a

223 aaaaaaaaa(whilea(re-search-forwardastringamaxat)a
224 aaaaaaaaaaa(ifa(nota(jtw–inside-comment-or-string))a
225 aaaaaaaaaaaaaaa(incfacount)))a

226 aaaaaaaaacount))))a

227 aa

228 a(defuna jtw–count a()a

229 aaa(leta(r)a
230 aaaaa(save-excursiona
231 aaaaaaa(beginning-of-line)a

232 aaaaaaa(setqara(-a(+a(jtw–count-stringa "\\<begin\\>")a

233 aaaaaaaaaaaaaaaaaaaaa(jtw–count-stringa "\\<beginMain\\>")a

234 aaaaaaaaaaaaaaaaaaaaa(*a2a(jtw–count-stringa "("))a

235 aaaaaaaaaaaaaaaaaaaaa(*a2a(jtw–count-stringa "{")))a

236 aaaaaaaaaaaaaaaaaa(+a(jtw–count-stringa "\\<end\\>")a

237 aaaaaaaaaaaaaaaaaaaaa(jtw–count-stringa "\\<endMain\\>")a

238 aaaaaaaaaaaaaaaaaaaaa(*a2a(jtw–count-stringa ")"))a

239 aaaaaaaaaaaaaaaaaaaaa(*a2a(jtw–count-stringa "}")))))a

240 aaaaaaa;;(messagea"r=%s"ar)a

241 aaaaaaar)))a

242 aa

243 a(defuna jtw–get-indent a()a

244 aaa(save-excursiona
245 aaaaa(beginning-of-line)a

246 aaaaa(whilea(looking-ata "a")a

247 aaaaaaa(forward-char))a

248 aaaaa(-a(point)a(point-at-bol))))a

249 aa

250 a(defuna jtw–set-indent a(should-be)a

251 aaa(ifa(>=ashould-bea0)a

252 aaaaaaa(save-excursiona
253 aaaaaaaaa(beginning-of-line)a

254 aaaaaaaaa(d-asserta(looking-ata "^[a\t]*"))a

255 aaaaaaaaa(setqaia(-a(match-enda0)a(match-beginninga0)))a

256 aaaaaaaaa(whena(/=aiashould-be)a
257 aaaaaaaaaaa;;(d-foo)a

258 aaaaaaaaaaa(delete-regiona(point-at-bol)a

259 aaaaaaaaaaaaaaaaaaaaaaaaaa(save-excursiona
260 aaaaaaaaaaaaaaaaaaaaaaaaaaaa(beginning-of-line)a

261 aaaaaaaaaaaaaaaaaaaaaaaaaaaa(skip-chars-forwarda "a")a(point)))a

262 aaaaaaaaaaa(beginning-of-line)a

263 aaaaaaaaaaa(inserta(make-stringashould-bea?a))))))a

264 aa

265 a(defvarajtw–basic-offseta3)a
266 aa

267 a(defuna jtw–line-1 a()a

268 aaa(interactive)a

269 aaa;;(d-foo)a

270 aaa(save-excursiona
271 aaaaa(beginning-of-line)a

272 aaaaa;;(d-foo)a

273 aaaaa(conda

274 aaaaaa((=a(point)a(point-min))a

275 aaaaaaa;;(d-foo)a

276 aaaaaaa(jtw–set-indenta0))a

277 aaaaaa((looking-ata "^[a-za]*\\(class\\|interface\\)\\>")a

278 aaaaaaa(whena(nota(flm-inside-comment-or-string))a
279 aaaaaaaaa(jtw–set-indenta0)))a
280 aaaaaa(ta

281 aaaaaaa(forward-linea-1)a

2.12. ELISP CODE FOR EDITING *.JTW FILES 101

282 aaaaaaa(setqarela(jtw–count))a
283 aaaaaaa(setqaia(jtw–get-indent))a
284 aaaaaaa(forward-linea1)a

285 aaaaaaa;;(ifa(/=arela0)a(beep))a

286 aaaaaaa;;(set-buffer-modified-pat))a

287 aaaaaaa(jtw–set-indenta(+aia(*arelajtw–basic-offset)))))))a
288 aa

289 a(defuna jtw–line-2 a()a

290 aaa;;(d-foo)a

291 aaa(save-excursiona

292 aaaaa(whena(looking-ata "^[a\t]*end")a

293 aaaaaaa(setqaia(jtw–get-indent))a
294 aaaaaaa(jtw–set-indenta(-aiajtw–basic-offset)))))a
295 aa

296 a;;(evala’(setqafa123))a

297 a;;(setqafunca’jtw--line-1)a

298 a;;(evala(consa’jtw--line-1anil))a

299 aa

300 a(defuna jtw–a a(func)a

301 aaa(save-excursiona
302 aaaaa(leta(m)a
303 aaaaaaa(setqama(make-marker))a

304 aaaaaaa(forward-line)a

305 aaaaaaa(set-markerama(point))a

306 aaaaaaa(ifa(nota(re-search-backwarda "^\\([a-z].*\\)?\\(class\\|interface\\)" anilat))a

307 aaaaaaaaaaa(goto-chara(point-min)))a

308 aaaaaaa;;(d-foo)a

309 aaaaaaa;;(goto-chara(point-min))a

310 aaaaaaa(whilea(<a(point)a(marker-positionam))a

311 aaaaaaaaa(evala(consafuncanil))a

312 aaaaaaaaa(forward-linea1))a

313 aaaaaaa(set-markeramanil))))a

314 aa

315 a(defuna jtw–meta-control-backslash a()a

316 aaa(interactive)a

317 aaa(leta(m)a
318 aaaaa(setqama(make-marker))a

319 aaaaa(set-markerama(point))a

320 aaaaa(ifa(anda(fboundpa’d-movement–unpad-buffer)a(d-movement–is-correct-
mode))a
321 aaaaaaaaa(d-movement–unpad-buffer))a
322 aaaaa(goto-chara(point-min))a

323 aaaaa(whilea(<a(point)a(point-max))a

324 aaaaaaa(jtw–line-1)a
325 aaaaaaa(forward-linea1))a

326 aaaaa(goto-chara(point-min))a

327 aaaaa(whilea(<a(point)a(point-max))a

328 aaaaaaa(jtw–line-2)a
329 aaaaaaa(forward-linea1))a

330 aaaaa(ifa(anda(fboundpa’d-movement–pad-buffer)a(d-movement–is-correct-mode))a
331 aaaaaaaaa(d-movement–pad-buffer))a
332 aaaaa(goto-charam)a

333 aaaaa(set-markeramanil)a

334 aaaaa(messagea "Ranajtw--meta-control-backslash")a

335 aaaaa))a

336 aa

337 a(defuna jtw–all a()a

338 aaa;;(d-beepsa"line1")a

339 aaa(jtw–aa’jtw–line-1)a
340 aaa;;(d-beepsa"line2")a

341 aaa(jtw–aa’jtw–line-2)a
342 aaa;;(d-beepsa"line3")a

343 aaa)a

344 aa

345 a(defuna jtw–get-indents a()a

346 aaa(save-excursiona

102 CHAPTER 2. THE J.T.W. LANGUAGE

347 aaaaa(leta(list)a
348 aaaaaaa(goto-chara(point-max))a

349 aaaaaaa(beginning-of-line)a

350 aaaaaaa(setqalistanil)a

351 aaaaaaa(whilea(nota(bobp))a
352 aaaaaaaaa(forward-linea-1)a

353 aaaaaaaaa(beginning-of-line)a

354 aaaaaaaaa(setqaia(jtw–get-indent))a
355 aaaaaaaaa(setqalista(consaialist)))a

356 aaaaaaalist)))a

357 aa

358 a(defuna jtw–newline a()a

359 aaa(interactive)a

360 aaa(leta(c)a
361 aaaaa(whena(save-excursiona(beginning-of-line)a(looking-ata "^.*//"))a

362 aaaaaaa(setqacat))a

363 aaaaa;;(d-foo)a

364 aaaaa(inserta "\n")a

365 aaaaa(jtw–indent-line)a

366 aaaaa(ifaca(inserta "//a"))))a

367 aa

368 a(defuna jtw–delete-line a()a

369 aaa(delete-regiona(point-at-bol)a(point-at-eol))a

370 aaa(ifa(looking-ata "\n")a

371 aaaaaaa(delete-chara1))a

372 aaa)a

373 aa

374 a(defuna jtw–get-current-indentation a()a

375 aaa(save-excursiona
376 aaaaa(beginning-of-line)a

377 aaaaa(d-asserta(looking-ata "^\\([a\t]*\\)[^a\t\r\n]"))a

378 aaaaa(/a(lengtha(buffer-substring-no-propertiesa(match-beginninga1)a(match-enda1)))a

379 aaaaaaaac-basic-offset)))a

380 aa

381 a(defuna jtw–current-line-as-string a()a

382 aaa(buffer-substring-no-propertiesa(point-at-bol)a

383 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa(point-at-eol)))a

384 aa

385 a(defuna jtw–get-prev-and-this-line a()a

386 aaa(beginning-of-line)a

387 aaa(leta(line)a
388 aaaaa(lista(ifa(save-excursiona
389 aaaaaaaaaaaaaaaaa(beginning-of-line)a

390 aaaaaaaaaaaaaaaaa(bobp))a

391 aaaaaaaaaaaaaaa "" a

392 aaaaaaaaaaaaa(save-excursiona
393 aaaaaaaaaaaaaaa(forward-linea-1)a

394 aaaaaaaaaaaaaaa(beginning-of-line)a

395 aaaaaaaaaaaaaaa(whilea(anda(nota(bobp))a(looking-ata "^[a\t]*$"))a

396 aaaaaaaaaaaaaaaaa(forward-linea-1)a

397 aaaaaaaaaaaaaaaaa(beginning-of-line))a

398 aaaaaaaaaaaaaaa(setqalinea(d-what-line))a
399 aaaaaaaaaaaaaaa;;(messagea"***ajtw--current-line-as-string=%s"a(jtw--current-line-as-string))a

400 aaaaaaaaaaaaaaa(jtw–current-line-as-string)))a
401 aaaaaaaaaaa(jtw–current-line-as-string)a
402 aaaaaaaaaaaline)))a

403 aa

404 a(defuna jtw–indent-line a()a

405 aaa(interactive)a

406 aaa(font-lock-fontify-buffer)a

407 aaa(leta(pairaprev-lineathis-lineaiatriple)a
408 aaaaa(save-match-dataa
409 aaaaaaa(save-excursiona
410 aaaaaaaaa(beginning-of-line)a

2.12. ELISP CODE FOR EDITING *.JTW FILES 103

411 aaaaaaaaa(setqaia(ifa(save-excursiona
412 aaaaaaaaaaaaaaaaaaaaaaa(beginning-of-line)a

413 aaaaaaaaaaaaaaaaaaaaaaa(bobp))a

414 aaaaaaaaaaaaaaaaaaaaa0a

415 aaaaaaaaaaaaaaaaaaa(save-excursiona
416 aaaaaaaaaaaaaaaaaaaaa(forward-linea-1)a

417 aaaaaaaaaaaaaaaaaaaaa(beginning-of-line)a

418 aaaaaaaaaaaaaaaaaaaaa(whilea(anda(nota(bobp))a(looking-ata "^[a\t]*$"))a

419 aaaaaaaaaaaaaaaaaaaaaaa(forward-linea-1)a

420 aaaaaaaaaaaaaaaaaaaaaaa(beginning-of-line))a

421 aaaaaaaaaaaaaaaaaaaaa(jtw–get-current-indentation)a
422 aaaaaaaaaaaaaaaaaaaaa;;(debuga"bar")a

423 aaaaaaaaaaaaaaaaaaaaa)))a

424 aaaaaaaaa(setqatriplea(jtw–get-prev-and-this-line))a
425 aaaaaaaaa;;(debuga"JohnaColtrane")a

426 aaaaaaaaa(setqaprev-linea(ntha0atriple))a

427 aaaaaaaaa(setqathis-linea(ntha1atriple))a

428 aaaaaaaaa(setqaprevious-nontrivial-linea(ntha2atriple))a

429 aaaaaaaaa(ifa(anda(string-matcha "begin" aprev-line)a

430 aaaaaaaaaaaaaaaaaa(save-excursiona
431 aaaaaaaaaaaaaaaaaaaa(goto-lineaprevious-nontrivial-line)a

432 aaaaaaaaaaaaaaaaaaaa(ora(looking-ata "^[a\t]*begin")a

433 aaaaaaaaaaaaaaaaaaaaaaaa(re-search-forwarda "begin" a(point-at-eol)at)))a

434 aaaaaaaaaaaaaaaaaa(nota(memqa(cadra(text-properties-ata(save-excursiona
435 aaa(goto-lineaprevious-nontrivial-line)a

436 aaa(beginning-of-line)a

437 aaa(re-search-forwarda "begin" a(point-at-eol)at))))a

438 aaaaaaaaaaaaaaaaaaaaaaaaaaaaa’(font-lock-string-facea

439 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaafont-lock-comment-facea

440 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaafont-lock-doc-facea

441 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaafont-lock-doc-string-facea

442 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaad-face-super-comment))))a
443 aaaaaaaaaaaaa(incfai))a

444 aaaaaaaaa(ifa(anda(string-matcha "end" athis-line)a

445 aaaaaaaaaaaaaaaaaa(save-excursiona
446 aaaaaaaaaaaaaaaaaaaa(beginning-of-line)a

447 aaaaaaaaaaaaaaaaaaaa(ora(looking-ata "^[a\t]*end")a

448 aaaaaaaaaaaaaaaaaaaaaaaa(re-search-forwarda "end" a(point-at-eol)at)))a

449 aaaaaaaaaaaaaaaaaa(nota(memqa(cadra(text-properties-ata(save-excursiona
450 aaa(beginning-of-line)a

451 aaa(re-search-forwarda "end" a(point-at-eol)at))))a

452 aaaaaaaaaaaaaaaaaaaaaaaaaaaaa’(font-lock-string-facea

453 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaafont-lock-comment-facea

454 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaafont-lock-doc-string-facea

455 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaafont-lock-doc-facea

456 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaad-face-super-comment))))a
457 aaaaaaaaaaaaa(decfai))a

458 aaaaaaaaa(setqaia(maxa0ai))a

459 aaaaaaaaa;;(messagea"indentingalinea%datoa%d"a(d-what-line)ai)a

460 aaaaaaaaa;;(sit-fora1)a

461 aaaaaaaaa(beginning-of-line)a

462 aaaaaaaaa;;(indent-line-toai)a

463 aaaaaaaaa(indent-line-toa(*ac-basic-offsetai))a

464 aaaaaaaaa;;(debuga"Halloway")a

465 aaaaaaaaa)a

466 aaaaaaa(beginning-of-line)a

467 aaaaaaa(skip-chars-forwarda "a\t")a

468 aaaaaaa;;(debuga"antelope")a

469 aaaaaaa)))a

470 aa

471 a;;aIaamaaanormalacommenta

472 a;;;aIaamaaasuperacommenta
473 aa
474 a(setqabg-coloura "#f0f0f0")a

104 CHAPTER 2. THE J.T.W. LANGUAGE

475 aa

476 a(requirea’d-make-face)a
477 aa

478 a(providea’jtw-mode)a

;; END FILE: ˜/dlisp/jtw-mode.el

2.13 Translator *.jtw to *.class Elisp source code

2.13.1 jtw-build-java.el Elisp source code

The file jtw-build-java.el saves to disk a *.java file corresponding to the *.jtw file given as
an argument. It gives error diagnostics on problematic J.T.W. constructs. This file respects file
line numbers in the case that include statements are present in your code. The large size of the
file (2,900+ lines of code) makes it unsuitable for inclusion in this book, so instead for the Elisp
source code, see the file jtw-build-java.el by visiting the following Website:

davin.50webs.com/J.T.W/tutorial-01-HelloWorld.html

and clicking on the tarball in Question 1.1. If you use the default setting of the installer module, the
file jtw-build-java.el will be located at /usr/share/emacs/site-lisp/dlisp/ for GNU/Linux
and c:/java-training-wheels/share/emacs/site-lisp/dlisp/ for M.S. Windows.

2.13.2 jtw-javac.el Elisp source code

The file jtw-javac.el is used to convert *.java files to *.class, again respecting line numbers in
the case that include statements are present in your source code. The location of jtw-javac.el
will be the same as the location of jtw-build-java.el. The output of the javac command has
its standard output and standard error piped into Emacs’ batch mode running the file jtw-javac

and invoking the method: doit. Here is the file jtw-javac.el. This file is included in the tarball
mentioned in the last subsection §2.13.1.

;; BEGIN FILE: ˜/dlisp/jtw-javac.el
001 aa

002 a;;;ajtw-javac.ela—aAaprogramaforareceivingatheaoutputaofatheaprogram:ajavaca
003 aa
004 a;;aCopyrighta(C)a2006-2016aDavinaPearsona

005 aa

006 a;;aAuthor/Maintainer:aDavinaMaxaPearsona<http://davin.50webs.com>a

007 a;;aKeywords:ajavacabackenda

008 a;;aVersion:a2.0a

009 aa

010 a;;aThisaprogramaisapartaofaGNUaJavaaTrainingaWheels.a

011 aa

012 a;;;a m4 limitation of warranty a

013 aa
014 a;;;aCommentary:a
015 aa
016 a;;aAaprogramaforareceivingatheaoutputaofatheaprogram:ajavacainatheaforma

017 a;;aofaaapipe.a

018 aa

019 a;;;aKnownaBugs:a
020 aa
021 a;;aNoneasoafar!a

022 aa

023 a;;;aCode:a
024 aa
025 a(messagea "***aWelcomeatoafile:ajtw-java.el")a

026 aa

027 a(requirea’cl)a
028 aa

029 a(whena(nota(fboundpa’d-emergency-set-load-path))a

http://davin.50webs.com/J.T.W/tutorial-01-HelloWorld.html

2.13. TRANSLATOR *.JTW TO *.CLASS ELISP SOURCE CODE 105

030 aaa(defuna d-emergency-set-load-path a()a

031 aaaaa(asserta(anda’king-konga(boundpa’*prefix*)))a
032 aaaaa(asserta*prefix*)a

033 aaaaa(setqaload-patha(consa(expand-file-namea(concata*prefix*a "/../dlisp/"))a

034 aaaaaaaaaaaaaaaaaaaaaaaaaaaload-path))a

035 aaaaa(messagea "**ajtw-javac.ela(caraload-path)=%s" a(caraload-path))))a

036 aa

037 a(d-emergency-set-load-path)a
038 aa

039 a(requirea’early-bindings)a
040 aa

041 a(messagea "file:ajtw-javac.ela%sa%s" a(print-symbola*prefix*)a(print-symbola*stump*))a

042 aa

043 a(defuna checkpoint a(msga&restarest)a

044 aaa(applya’messageamsgarest)a

045 aaa;;adoanothinga

046 aaa)a

047 aa

048 a(ifa(nota(boundpa’file-comes-from))a
049 aaaaa(setqafile-comes-fromanil))a

050 aa

051 a(ifa(notafile-comes-from)a
052 aaaaa(setqafile-comes-froma(consa "jtw-javac.el" afile-comes-from)))a

053 aa

054 a(requirea’early-bindings)a
055 a(requirea’jtw-build-java)a
056 aa

057 a(messagea "***aWelcomeatoafile:ajtw-javac.ela%sa%s" a

058 aaaaaaaaaa(print-symbola*prefix*)a
059 aaaaaaaaaa(print-symbola*stump*)a
060 aaaaaaaaaa)a

061 aa

062 a(d-asserta(finda "jtw-javac.el" afile-comes-froma:testa’string=))a

063 a;;(d-asserta(string=afile-comes-froma"jtw-javac.el"))a

064 aa

065 a;;(messagea"***aSymbolavalue...a%s"a(print-symbola*stump*))a

066 aa

067 a(defuna doit a()a

068 aaa(interactive)a

069 aaa;;(read-line-pre)a

070 aaa;;(messagea"input8:ajtw-javac:a*stump*=%s"a*stump*)a

071 aaa(messagea "***aCalledadefun:adoitafile:ajtw-javac.ela%s" a

072 aaaaaaaaaaaa(print-symbola*stump*))a
073 aaa(leta(numbasaid-messageared-lineanumbafile-less-suffixaold-suffixanew-suffixa
074 aaaaaaaaaaaaaaline-leftaline-rightafile-plus-suffixalocationa

075 aaaaaaaaaaaaaa(case-fold-searchat)ap)a

076 aaaaa(condition-caseaerra
077 aaaaaaaaa;;(whilea(setqared-linea(d-read-line))a

078 aaaaaaaaa(whilea(setqared-linea(read-from-minibuffera ""))a

079 aaaaaaaaaaa(setqasaid-messageanil)a

080 aaaaaaaaaaa;;(messagea"input0:ared-line=%s"ared-line)a

081 aaaaaaaaaaa;;(ifa(nota(string-matcha"^Loadinga"ared-line))a

082 aaaaaaaaaaa(conda

083 aaaaaaaaaaaa((ora(string-matcha(regexp-quotea "Loadinga00debian-vars...")ared-line)a

084 aaaaaaaaaaaaaaaaa(string-matcha(regexp-quotea "Loadinga/etc/emacs/site-start.d/50autoconf.el")ared-line)a

085 aaaaaaaaaaaaaaaaa(string-matcha(regexp-quotea "Loadinga/etc/emacs/site-start.d/50dictionaries-common.el")ared-line)a

086 aaaaaaaaaaaaaaaaa(string-matcha(regexp-quotea "Loadingadebian-ispell...")ared-line)a

087 aaaaaaaaaaaaaaaaa(string-matcha(regexp-quotea "Loadinga/var/cache/dictionaries-common/emacsen-ispell-default.el...")ared-line)a

088 aaaaaaaaaaaaaaaaa(string-matcha(regexp-quotea "Loadinga/var/cache/dictionaries-common/emacsen-ispell-dicts.el...")ared-line)a

089 aaaaaaaaaaaaaaaaa(string-matcha(regexp-quotea "Loadinga/etc/emacs/site-start.d/50git-core.el")ared-line)a

090 aaaaaaaaaaaaaaaaa)a

091 aaaaaaaaaaaaa;;adoanothinga

106 CHAPTER 2. THE J.T.W. LANGUAGE

092 aaaaaaaaaaaaa)a

093 aaaaaaaaaaaa((string-matcha(concata "\\(\\([a-zA-Z]:/\\|" a

094 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa "~/\\|/\\|\\./\\|\\)" a

095 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa "[a-zA-Z0-9 /]+\\)" a

096 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa "\\(\\.java\\):\\([0-9]+\\)")a

097 aaaaaaaaaaaaaaaaaaaaaaaaaaared-line)a

098 aaaaaaaaaaaaa(progna
099 aaaaaaaaaaaaaaa(setqafilea(substringared-linea(match-beginninga0)a(match-enda3)))a

100 aaaaaaaaaaaaaaa;;(messagea"input6:ajtw11-ebook.tex=%s"afile)a

101 aaaaaaaaaaaaaaa(save-match-dataa
102 aaaaaaaaaaaaaaaaa(ifa(string-matcha "^/" afile)a

103 aaaaaaaaaaaaaaaaaaaaa(setqafilea(substringafilea1))))a

104 aaaaaaaaaaaaaaa;;(messagea"input7:ajtw11-ebook.tex=%s"afile)a

105 aaaaaaaaaaaaaaa;;(setqasaid-messageat)a

106 aaaaaaaaaaaaaaa(setqanumbaaaaaaaaaaaaa(1-a(d-read-stra(substringared-linea
107 aaa(match-beginninga4)a

108 aaa(match-enda4)))))a

109 aaaaaaaaaaaaaaa(setqafile-less-suffixa(substringared-linea

110 aaa(match-beginninga1)a

111 aaa(match-enda1)))a

112 aaaaaaaaaaaaaaa;;(messagea"input3:ared-line=%s"ared-line)a

113 aaaaaaaaaaaaaaa;;(messagea"input3:afile-less-suffix=%s"afile-less-suffix)a

114 aaaaaaaaaaaaaaa(setqaold-suffixa ".java")a

115 aaaaaaaaaaaaaaa(setqanew-suffixa ".jtw")a

116 aaaaaaaaaaaaaaa(setqaline-leftaaaaaaaa(substringared-linea0a(match-enda1)))a

117 aaaaaaaaaaaaaaa(setqaline-rightaaaaaaa(substringared-linea(match-enda4)))a

118 aaaaaaaaaaaaaaa(setqafile-plus-suffixa(concatafile-less-suffixanew-suffix))a

119 aaaaaaaaaaaaaaa(setqafileaaaaaaaaaaaaa(concatafile-less-suffixaold-suffix))a

120 aaaaaaaaaaaaaaa(ifa(string-matcha "./" afile)a

121 aaaaaaaaaaaaaaaaaaa(setqafilea(substringafilea(match-enda0))))a

122 aaaaaaaaaaaaaaa;;(setqadefault-directorya(file-name-directoryadefault-directory))a

123 aaaaaaaaaaaaaaa;;(setqafilea(concatadefault-directoryafile))a

124 aaaaaaaaaaaaaaa;;(errora"MariaaCallas")a

125 aaaaaaaaaaaaaaa;;(messagea"input8:a(file-name-directoryafile)=%s"a(file-name-directoryafile))a

126 aaaaaaaaaaaaaaa;;(messagea"input7:afile=%s"afile)a

127 aaaaaaaaaaaaaaa;;(messagea"input7:adefault-directoryapre=%s"adefault-directory)a

128 aaaaaaaaaaaaaaa(d-asserta(stringpafile))a

129 aaaaaaaaaaaaaaa;;(messagea"input7:afile=%s"afile)a

130 aaaaaaaaaaaaaaa;;(messagea"input9:a(file-name-directoryafile)=%s"a(file-name-directoryafile))a

131 aaaaaaaaaaaaaaa(whena(file-name-directoryafile)a
132 aaaaaaaaaaaaaaaaa(d-asserta(stringpa(file-name-directoryafile)))a

133 aaaaaaaaaaaaaaaaa(d-asserta(stringpadefault-directory))a

134 aaaaaaaaaaaaaaaaa(ifa(string-matcha(file-name-directoryafile)adefault-directory)a
135 aaaaaaaaaaaaaaaaaaaaa(setqadefault-directorya(substringadefault-directorya0a(match-beginninga0))))a

136 aaaaaaaaaaaaaaaaa;;(messagea"input7:adefault-directoryapost=%s"adefault-directory)a

137 aaaaaaaaaaaaaaaaa;;(messagea"input7:a(file-name-nondirectory)=%s"a(file-name-nondirectoryafile))a

138 aaaaaaaaaaaaaaaaa)a

139 aaaaaaaaaaaaaaa(d-asserta(stringpafile))a

140 aaaaaaaaaaaaaaa(d-asserta(stringpadefault-directory))a

141 aaaaaaaaaaaaaaa;;(messagea"input8:a(concatadefault-directoryafile)=%s"a(concatadefault-directoryafile))a

142 aaaaaaaaaaaaaaa;;(messagea"input8:anumb=%s"anumb)a

143 aaaaaaaaaaaaaaa(find-filea(concatadefault-directoryafile))a

144 aaaaaaaaaaaaaaa;;(messagea"input2:afindingafile=%s"afile)a

145 aaaaaaaaaaaaaaa;;(debuga"DesolationaRow")a

146 aaaaaaaaaaaaaaa(goto-lineanumb)a

147 aaaaaaaaaaaaaaa;;(debuga"TigeraWoods")a

148 aaaaaaaaaaaaaaa;;(messagea"input2:aAmberaDempsey")a

149 aaaaaaaaaaaaaaa;;(messagea"input2:a(buffer-file-name)=%s"a(buffer-file-name))a

150 aaaaaaaaaaaaaaa(setqalocationa(warn–get-location))a
151 aaaaaaaaaaaaaaa;;(messagea"input2:a(cdralocation)=%d"a(cdralocation))a

152 aaaaaaaaaaaaaaa;;(messagea"input2:asetqalocation")a

153 aaaaaaaaaaaaaaa(setqared-linea(concataline-leftanew-suffixa ":" a(prin1-to-stringa(cdralocation))aline-right))a

154 aaaaaaaaaaaaaaa;;(messagea"input2:asetqared-line")a

155 aaaaaaaaaaaaaaa;;(debuga"J.S.aBacha/aMassainaBaMinor")a

2.13. TRANSLATOR *.JTW TO *.CLASS ELISP SOURCE CODE 107

156 aaaaaaaaaaaaaaa(messagea "%sainput1:a%s" a*java-namespace*ared-line)))a

157 aaaaaaaaaaaa(ta

158 aaaaaaaaaaaaa(messagea "%sainput2:a%s" a*java-namespace*ared-line))))a

159 aaaaaaa(errora

160 aaaaaaaa(setqapa(prin1-to-stringa(cdraerr)))a

161 aaaaaaaa(ifa(anda(nota(string-matcha "Errorareadingafromastdin" ap))a

162 aaaaaaaaaaaaaaaaa(nota(string-matcha "Endaofafile" aaaaaaaaaaaaaap))a

163 aaaaaaaaaaaaaaaaa(nota(string-matcha "Eobp" aaaaaaaaaaaaaaaaaaaaap)))a

164 aaaaaaaaaaaa(messagea "%sainput4:aError=%s" a*java-namespace*a(cdraerr)))a

165 aaaaaaaa)))a

166 aaa;;(messagea"***aendadefun:adoitafile:ajtw-javac.ela%sa%s"a

167 aaa;;aaaaaaaaa(print-symbola*stump*)a

168 aaa;;aaaaaaaaa(print-symbola*prefix*))a

169 aaa)a

170 aa

171 a;;(messagea"***aScannerareachedaendafile:ajtw-javac.el")a

172 a;;a(rounda(/a(d-what-line)a58.0))a2apagesa

173 a(providea’jtw-javac)a

;; END FILE: ˜/dlisp/jtw-javac.el

2.13.3 jtw-java.el Elisp source code

The file jtw-java.el reads the output of java’s standard output and standard error piped into
this file and generates correct line numbers of java error messages, even if file inclusion is used.
The location of jtw-java.el will be the same as the location of jtw-build-java.el. Here is the
file jtw-java.el. This file in included in the tarball mentioned two subsections ago, in §2.13.1.

;; BEGIN FILE: ˜/dlisp/jtw-java.el

001 a;;;ajtw-java.ela—aAaprogramaforareceivingatheaoutputaofatheaprogram:ajavaa
002 aa
003 a;;aCopyrighta(C)a2006-2016aDavinaPearsona

004 aa

005 a;;aAuthor/Maintainer:aDavinaMaxaPearsona<http://davin.50webs.com>a

006 a;;aKeywords:ajavaabackenda

007 a;;aVersion:a2.0a

008 aa

009 a;;aThisafileaisapartaofaGNUaJavaaTrainingaWheels.a

010 aa

011 a;;;a m4 limitation of warranty a

012 aa
013 a;;;aCommentary:a
014 aa
015 a;;aAaprogramaforareceivingatheaoutputaofatheaprogram:ajavaainatheaforma

016 a;;aofaaapipe.a

017 aa

018 a;;;aKnownaBugs:a
019 aa
020 a;;aNoneasoafar!a

021 aa

022 a;;;aCode:a
023 aa
024 a(messagea "***aWelcomeatoafile:ajtw-java.el")a

025 aa

026 a(setqadebug-on-errorat)a

027 aa

028 a(requirea’cl)a
029 aa

030 a(messagea "WattiesaBakedaBeansamakeayouafart")a

031 aa

032 a(progna
033 aaa(asserta(anda’rocket-manaaa(boundpa’*prefix*)))a
034 aaa(asserta(anda’wonder-womana*prefix*))a
035 aaa)a

108 CHAPTER 2. THE J.T.W. LANGUAGE

036 aa

037 a(messagea "****aTrisquelaLinux")a

038 aa

039 a(whena(nota(fboundpa’d-emergency-set-load-path))a

040 aaa(defuna d-emergency-set-load-path a()a

041 aaaaa(messagea "Insidead-emergency-set-load-path")a

042 aaaaa(asserta(anda’foxy-ladya(boundpa’*prefix*)))a
043 aaaaa(asserta*prefix*)a

044 aaaaa(setqaload-patha(consa(expand-file-namea(concata*prefix*a "/../dlisp/"))a

045 aaaaaaaaaaaaaaaaaaaaaaaaaaaload-path))a

046 aaaaa(messagea "**ajtw-java.ela(caraload-path)=%s" a(caraload-path))))a

047 aa

048 a(d-emergency-set-load-path)a
049 aa

050 a(requirea’early-bindings)a
051 aa

052 a(progna
053 aaa(asserta(anda’cattymousea(boundpa’*prefix*)))a
054 aaa(asserta(anda’doggydoggya*prefix*))a
055 aaa)a

056 aa

057 a(messagea "***afile:ajtw-java.ela%sa%s" a(print-symbola*prefix*)a(print-symbola*stump*))a

058 aa

059 a(ifa(nota(boundpa’file-comes-from))a
060 aaaaa(setqafile-comes-fromanil))a

061 aa

062 a(setqafile-comes-froma(consa "jtw-java.el" afile-comes-from))a

063 aa

064 a(messagea "*abegina(requirea’early-bindings)")a

065 aa

066 a(requirea’early-bindings)a
067 aa

068 a(messagea "*aenda(requirea’early-bindings)")a

069 aa

070 a(requirea’jtw-build-java)a
071 aa

072 a(d-asserta(finda "jtw-java.el" afile-comes-froma:testa’string=))a

073 aa

074 a(defuna checkpoint a(msga&restarest)a

075 aaa;;(applya’messageamsgarest)a

076 aaa;;adoanothinga

077 aaa)a

078 aa

079 a(defuna doit a()a

080 aaa(interactive)a

081 aaa(messagea "Welcomeatoadefun:adoitafile:ajtw-java.elaDOUGHNUTS")a

082 aaa(leta(red-lineasaid-messageanumbafile-less-suffixaold-suffixa
083 aaaaaaaaaaaaaaaaaanew-suffixaline-leftaline-rightafile-plus-suffixa

084 aaaaaaaaaaaaaaaaaacdr-err)a

085 aaaaa(condition-caseaerra
086 aaaaaaaaa(whilea(setqared-linea(read-from-minibuffera ""))a

087 aaaaaaaaaaa;;(whilea(setqared-linea(d-read-line))a

088 aaaaaaaaaaa;;(messagea"input0:ared-line=%s"ared-line)a

089 aaaaaaaaaaa;;(messagea"1")a

090 aaaaaaaaaaa(d-assertared-line)a

091 aaaaaaaaaaa;;(messagea"2")a

092 aaaaaaaaaaa(d-asserta(stringpared-line))a

093 aaaaaaaaaaa;;(messagea"3")a

094 aaaaaaaaaaa(d-asserta(sequencepared-line))a

095 aaaaaaaaaaa;;(messagea"4")a

096 aaaaaaaaaaa(setqasaid-messageanil)a

097 aaaaaaaaaaa;;(messagea"5")a

098 aaaaaaaaaaa(conda

099 aaaaaaaaaaaa((ora

2.13. TRANSLATOR *.JTW TO *.CLASS ELISP SOURCE CODE 109

100 aaaaaaaaaaaaaa(string-matcha(regexp-quotea "Loadinga00debian-vars...")ared-line)a

101 aaaaaaaaaaaaaa(string-matcha(regexp-quotea "Loadinga/etc/emacs/site-start.d/50aut(stringa(regexp-quoteaoconf.el")ared-line)a

102 aaaaaaaaaaaaaa(string-matcha(regexp-quotea "Loadinga/etc/emacs/site-start.d/50dictionaries-common.el")ared-line)a

103 aaaaaaaaaaaaaa(string-matcha(regexp-quotea "Loadingadebian-ispell...")ared-line)a

104 aaaaaaaaaaaaaa(string-matcha(regexp-quotea "Loadinga/var/cache/dictionaries-common/emacsen-ispell-default.el")ared-line)a

105 aaaaaaaaaaaaaa(string-matcha(regexp-quotea "Loadinga/var/cache/dictionaries-common/emacsen-ispell-dicts.el")ared-line)a

106 aaaaaaaaaaaaaa(string-matcha(regexp-quotea "Loadinga/etc/emacs/site-start.d/50git-core.el")ared-line)a

107 aaaaaaaaaaaaaa)a

108 aaaaaaaaaaaaa;;adoanothinga

109 aaaaaaaaaaaaa)a

110 aaaaaaaaaaaa((string-matcha "\\([A-Z][a-zA-Z0-9]*\\)\\(\\.java\\):\\([0-9]+\\)" ared-line)a

111 aaaaaaaaaaaaa;;(messagea"6")a

112 aaaaaaaaaaaaa(setqasaid-messageat)a

113 aaaaaaaaaaaaa;;(messagea"7")a

114 aaaaaaaaaaaaa(setqanumba(substringared-linea(match-beginninga3)a(match-enda3)))a

115 aaaaaaaaaaaaa;;(messagea"8")a

116 aaaaaaaaaaaaa(d-asserta(d-read-readyanumb))a
117 aaaaaaaaaaaaa;;(messagea"9")a

118 aaaaaaaaaaaaa;;(d-asserta(sequencepa(count-locations)))a

119 aaaaaaaaaaaaa;;(setqanumba(-a(d-read-stranumb)a(count-locations)))a

120 aaaaaaaaaaaaa;;(messagea"10")a

121 aaaaaaaaaaaaa(d-asserta(sequencepanumb))a

122 aaaaaaaaaaaaa;;(messagea"11")a

123 aaaaaaaaaaaaa(d-asserta(stringpanumb))a

124 aaaaaaaaaaaaa(setqanumba(d-read-stranumb))a
125 aaaaaaaaaaaaa;;(messagea"12")a

126 aaaaaaaaaaaaa(d-asserta(integerpanumb))a

127 aaaaaaaaaaaaa;;(d-asserta(sequencepanumb))a

128 aaaaaaaaaaaaa;;(messagea"13")a

129 aaaaaaaaaaaaa(d-asserta(stringpared-line))a

130 aaaaaaaaaaaaa(d-asserta(sequencepared-line))a

131 aaaaaaaaaaaaa(d-asserta(anda1a(match-beginninga1)))a

132 aaaaaaaaaaaaa(d-asserta(anda2a(match-enda1)))a

133 aaaaaaaaaaaaa(d-asserta(anda3a(match-beginninga2)))a

134 aaaaaaaaaaaaa(d-asserta(anda4a(match-enda2)))a

135 aaaaaaaaaaaaa(d-asserta(anda5a(match-beginninga3)))a

136 aaaaaaaaaaaaa(d-asserta(anda6a(match-enda3)))a

137 aaaaaaaaaaaaa;;(messagea"14")a

138 aaaaaaaaaaaaa(setqafile-less-suffixa(substringared-linea(match-beginninga1)a(match-enda1)))a

139 aaaaaaaaaaaaa;;(messagea"15")a

140 aaaaaaaaaaaaa(d-assertafile-less-suffix)a

141 aaaaaaaaaaaaa(d-asserta(stringpafile-less-suffix))a

142 aaaaaaaaaaaaa;;(messagea"16")a

143 aaaaaaaaaaaaa(setqaold-suffixa ".java")a

144 aaaaaaaaaaaaa;;(messagea"17")a

145 aaaaaaaaaaaaa(d-assertaold-suffix)a

146 aaaaaaaaaaaaa(d-asserta(stringpaold-suffix))a

147 aaaaaaaaaaaaa;;(messagea"18")a

148 aaaaaaaaaaaaa(setqanew-suffixa ".jtw")a

149 aaaaaaaaaaaaa;;(messagea"19")a

150 aaaaaaaaaaaaa(d-assertanew-suffix)a

151 aaaaaaaaaaaaa(d-asserta(stringpanew-suffix))a

152 aaaaaaaaaaaaa;;(messagea"20")a

153 aaaaaaaaaaaaa(setqaline-leftaaaaaaaa(substringared-linea0a(match-beginninga1)))a

154 aaaaaaaaaaaaa(setqaline-rightaaaaaaa(substringared-linea(match-enda3)))a

155 aaaaaaaaaaaaa(setqafile-plus-suffixa(concatafile-less-suffixanew-suffix))a

156 aaaaaaaaaaaaa(setqafileaaaaaaaaaaaaa(concatafile-less-suffixaold-suffix))a

157 aaaaaaaaaaaaa;;(messagea"21")a

158 aaaaaaaaaaaaa(d-asserta(stringpaline-left))a

159 aaaaaaaaaaaaa(d-asserta(stringpaline-right))a

160 aaaaaaaaaaaaa(d-asserta(stringpafile-plus-suffix))a

161 aaaaaaaaaaaaa(d-asserta(stringpafile))a

162 aaaaaaaaaaaaa;;(messagea"22")a

110 CHAPTER 2. THE J.T.W. LANGUAGE

163 aaaaaaaaaaaaa(find-fileafile)a

164 aaaaaaaaaaaaa;;(messagea"23")a

165 aaaaaaaaaaaaa(d-asserta(integerpanumb))a

166 aaaaaaaaaaaaa(goto-lineanumb)a

167 aaaaaaaaaaaaa;;(messagea"(warn--get-location)=%s"a(warn--get-location))a

168 aaaaaaaaaaaaa;;(messagea"24")a

169 aaaaaaaaaaaaa;;(debuga"TigeraWoods")a

170 aaaaaaaaaaaaa(setqalocationa(warn–get-location))a
171 aaaaaaaaaaaaa;;(setqalocationa(consafileanumb))a

172 aaaaaaaaaaaaa;;(messagea"24b")a

173 aaaaaaaaaaaaa;;(messagea"location=%s"alocation)a

174 aaaaaaaaaaaaa(d-asserta(nota(eqalocationat)))a

175 aaaaaaaaaaaaa(d-asserta(nota(eqalocationanil)))a

176 aaaaaaaaaaaaa(d-asserta(sequencepalocation))a

177 aaaaaaaaaaaaa(d-asserta(conspalocation))a

178 aaaaaaaaaaaaa(d-asserta(stringpa(caralocation)))a

179 aaaaaaaaaaaaa(d-asserta(numberpa(cdralocation)))a

180 aaaaaaaaaaaaa;;(messagea"25")a

181 aaaaaaaaaaaaa(whenalocationa
182 aaaaaaaaaaaaaaa;;(messagea"26")a

183 aaaaaaaaaaaaaaa(setqared-linea(concataline-lefta(caralocation)a ":" a(prin1-to-stringa(cdralocation))aline-right))a

184 aaaaaaaaaaaaaaa;;(messagea"27")a

185 aaaaaaaaaaaaaaa)a

186 aaaaaaaaaaaaa;;(messagea"28")a

187 aaaaaaaaaaaaa(d-asserta(sequencepared-line))a

188 aaaaaaaaaaaaa)a

189 aaaaaaaaaaaa)aa;;a endaCOND! a

190 aaaaaaaaaaa(whenasaid-messagea

191 aaaaaaaaaaaaa(messagea "%sainput1:a%s" a*java-namespace*ared-line))a

192 aaaaaaaaaaa(whena(notasaid-message)a

193 aaaaaaaaaaaaa(messagea "%sainput2:a%s" a*java-namespace*ared-line))a

194 aaaaaaaaaaa;;(messagea"JeanaJarre’saEquinoxe")a

195 aaaaaaaaaaa)a

196 aaaaaaa(errora

197 aaaaaaaa(setqacdr-erra(prin1-to-stringa(cdraerr)))a

198 aaaaaaaa(ifa(ora(string-matcha "Errorareadingafromastdin" aaaaaaaaaacdr-err)a

199 aaaaaaaaaaaaaaaa(string-matcha "Eobp" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaacdr-err)a

200 aaaaaaaaaaaaaaaa(string-matcha "Couldanotafindaoraloadamainaclass" acdr-err))a

201 aaaaaaaaaaaa(messagea "Knownaerroraerr=%s" acdr-err)a

202 aaaaaaaaaa(messagea "%sainput3:aUnknownaerrora(%s)" a*java-namespace*acdr-err)a

203 aaaaaaaaaa)a;;a endaif! a

204 aaaaaaaa)aaa;;a endaERROR! a

205 aaaaaaa)aaaa;;aendaCONDITION-CASE!aerra
206 aaaaa)aaaaaa;;aendaLET!ared-lineasaid-messageanumbafile-less-suffixaold-suffixa
207 aaa;;(messagea"Reachedaendaofadefun:adoitafile:ajtw-java.elaDOUGHNUTS")a

208 aaa)a

209 aa

210 a;;aMyaFairaLadya/aRexaHarrisona&aJulieaAndrewsa

211 a;;(messagea"Scanneraataendaofafile:ajtw-java.el")a

212 aa

213 a;;a(rounda(/a(d-what-line)a50.0))a3apagesa

214 a(providea’jtw-java)a

;; END FILE: ˜/dlisp/jtw-java.el

2.14 An idiom for constructors in Java and C++

When a constructor’s purpose is to set one or many property variables, it seems natural to
name the parameters with the same names as the propertys. The problem with this approach is
that you need to distinguish between the names of the propertys with the names of the param-
eters. Luckily there is a way to do this. The this keyword is not learned by novice programmers
because it is implicit in every mention of a property in the same class and every call to a method

2.14. AN IDIOM FOR CONSTRUCTORS IN JAVA AND C++ 111

of the same class. Here is some J.T.W. code to show you what I mean:

001 class A

002 begin

003 property int data;

004 method void foo ()

005 begin

006 System.out.println("data=" + data);

007 bar(); PRINTS OUT: bar!

008 end

009 method void bar ()

010 begin

011 System.out.println(”bar!”);

012 end

013 end

The foo method can be identically rewritten as follows:

001 class A

002 begin

003 property int data;

004 method void foo ()

005 begin

006 System.out.println("data=" + this.data);

007 this.bar(); PRINTS OUT: bar!

008 end

009 method void bar ()

010 begin

011 System.out.println(”bar!”);

012 end

013 end

Therefore this.data inside the A class is the same as data and this.bar() inside the A class
is the same as bar(). A difference occurs when there is a parameter called data, in which case
this.data and data refer to different variables, the former to the property data and the latter
to the parameter data. You can exploit this difference by writing your constructor like so:

001 class A

002 begin

003

004 property int data;

005

006 constructor A(int data)

007 begin

008 this.data = data;

009 end

010 end

or for more parameters, like so:

001 class A

002 begin

112 CHAPTER 2. THE J.T.W. LANGUAGE

enterSea()

Jeep

soundHorn()

SeaVessel

displacement

launch()

Frigate

fireGun()

Vehicle

maxSpeed

LandVehicle

numWheels

drive()

maxPassengers
name

Hovercraft

enterLand()

Figure 2.3: A U.M.L diagram for C++

003

004 property int data1;

005 property int data2;

006 property int data3;

007

008 constructor A(int data1, int data2, int data3)

009 begin

010 this.data1 = data1;

011 this.data2 = data2;

012 this.data3 = data3;

013 end

014 end

The only difference between the Java code and C++ code is that this in C++ is a pointer
to the current object rather than a reference to the current object like it is in Java. Therefore in
C++ and Lisp++ you write this->data rather than this.data in Java and J.T.W.

2.15 Interfaces in Java and J.T.W.

This section explains how interfaces in Java and J.T.W. are a solution to C++’s problematic
multiple inheritance. Consider Figure 2.3 for an example. The Hovercraft class shown in the
diagram inherits from both LandVehicle and SeaVessel since the hover-craft is in the rather
unique position of being able to travel on land and sea. The Hovercraft class cannot be expressed
in Java since Java does not have the facility for multiple inheritance. All other classes in the
diagram use single inheritance and so they can be expressed in Java.

One of the problems with multiple inheritance is in deciding what to do with propertys
in a class like Vehicle that is an indirect superclass of Hovercraft in two different ways, via
LandVehicle and via SeaVessel. The hover-craft in being able to drive on land and sea might
have two different maximum speeds, one for land travel and the other for sea travel. This leads

2.16. PACKAGES IN JAVA AND J.T.W. 113

to a problem of what should be the appropriate value for the maxSpeed property of Hovercraft
objects? We could set maxSpeed to be the maximum of the two speed values but then this might
badly affect the behaviour of the drive method which, because it is defined in the LandVehicle

class, might assume that the value of maxSpeed is the maximum speed attainable on land. A
similar problem arises with the launch method.

Another approach would be for the Hovercraft class to possess two separate maxSpeed prop-
ertys, one for the maximum speed on land and the other for the maximum speed on the sea. The
C++ language gives the programmer a choice between having one or two copies of maxSpeed with
the option of using virtual base classes rather than normal inheritance, whereas Java avoids this
extra complexity by not allowing multiple inheritance.

So that the Java programmer is not disadvantaged by the lack of multiple inheritance, Java
has the interface feature, which allows for a kind of multiple inheritance involving interfaces,
without the complexity of multiple inheritance of classes that is present in languages like C++.
Figure 2.4 shows on the left a diagram showing how interfaces in Java relate to the Java concepts
of classes and objects. On the right is a diagram showing the equivalent concepts in C++.

The diagram shows that in a sense interfaces are a “higher level concept” than classes, since
you can never create an instance of an interface, only instances of classes that implement that
interface. Interfaces have no constructors.

The most important feature of interfaces is that a class can implement more than one inter-
face. Interfaces are limited in two respects. Firstly, they are not allowed to have any propertys
except static constants, and secondly the methods of an interface must be defined without
bodies, like abstract methods. These two limitations prevent interfaces from suffering from
the problem that occurred with the maxSpeed property in the previous U.M.L. diagram.

We can re-work the previous U.M.L. diagram into something that can be expressed within the
Java language by replacing the classes Vehicle, LandVehicle and SeaVessel with interfaces
IsVehicle, IsLandVehicle and IsSeaVessel, respectively. The dotted arrows in Figure 2.5
indicate interfaces extending from interfaces. Note that the Hovercraft class implements
both the IsLandVehicle and IsSeaVessel interfaces, rather than inheriting from two classes
which is not allowed in Java.

Since an interface is not allowed to have any propertys except static constants, we have
replaced the propertys that existed in the classes Vehicle, LandVehicle and SeaVessel with
“getter” and “setter” methods. That is to say that, for each property X, there is now a pair of
methods getX and setX. A getX, setX pair of public methods in a class is logically equivalent
for users of the class to a public property called X. Since the methods of the interfaces
are defined without bodies, they are defined in the classes Jeep, Hovercraft and Frigate that
implement the three interfaces. The getMaxSpeed() method could return the maximum speed
depending on whether or not the vehicle is currently on the land or on the sea, and similarly for
the setMaxSpeed() method.

2.16 Packages in Java and J.T.W.

2.16.1 Package visibility

In Java and J.T.W. when an object is declared with package visibility it gains a level of protection
between protected and private.

public protected package private
visibility visibility visibility visibility

In the same class as X 4 4 4 4

In the same package as X 4 4 4 6

In a subclass of X but a different package 4 4 6 6

Anywhere else 4 6 6 6

114 CHAPTER 2. THE J.T.W. LANGUAGE

classes.

can extend

one or more

other interfaces.

An object

is an instance

of a class.

An object

is an instance

of a class.

A class

can extend

another class.

An interface

interface

class

object

Java C++

class

object

A class

can implement

one or more

interfaces.
A class

more other

can inherit

from one or

Figure 2.4: Comparision of Java’s objects, classes and interfaces with C++’s objects and classes.
Note that to simulate Java’s interfaces in C++ it is sufficient to use abstract classes, that is to
say: classes with at least one pure virtual method.

Frigate

fireGun()

setDisplacement(int)

getDisplacement()

launch()

getNumWheels()

setNumWheels(int)

drive()

IsSeaVesselIsLandVehicle
<<interface>> <<interface>>

getName()

setName(String)

getMaxPassengers()

setMaxPassengers(int)

getMaxSpeed()

setMaxSpeed(int)

IsVehicle
<<interface>>

Hovercraft

enterLand()
enterSea()

Jeep

soundHorn()

Figure 2.5: A U.M.L diagram for Java. Note that dotted lines represent interfaces extending
from one another.

2.16. PACKAGES IN JAVA AND J.T.W. 115

To get package visibility, simply omit public, private and protected from the method, prop-
erty or constructor spec, e.g. like so in J.T.W.:

// BEGIN FILE: A.jtw

001 aclassaAa

002 abegina

003 aaaafunctionavoida package visible function ()a

004 aaaabegina

005 aaaaaaa//a NOTE: acodeagoesaherea

006 aaaaenda
007 aaaamethodavoida package visible method ()a

008 aaaabegina

009 aaaaaaa//a NOTE: acodeagoesaherea

010 aaaaenda
011 aaaapropertyaintapackage visible property;a

012 aa

013 aaaaclassVaraintapackage visible class variable;a

014 aenda
// END FILE: A.jtw

and like so in Java:

// BEGIN FILE: A.java

001 aclassaAa

002 a{a
003 aaaastaticavoida package visible function ()a

004 aaaa{a
005 aaaaaaa//a NOTE: acodeagoesaherea

006 aaaa}a
007 aaaavoida package visible method ()a

008 aaaa{a
009 aaaaaaa//a NOTE: acodeagoesaherea

010 aaaa}a
011 aaaaintapackage visible property;a

012 aa

013 aaaastaticaintapackage visible class variable;a

014 a}a
// END FILE: A.java

2.16.2 Moving a class into a package

Consider a typical class:

// BEGIN FILE: jtw-tutorials/A.jtw// END FILE: jtw-tutorials/A.jtw

To move this class into a package called (for argument’s sake) pkg, you need to set the class’s
visibility status from none (i.e. package visibility) to public. Also each package visible (i.e. no
private or public or protected specification) class variable, function, method and property
needs to have its visibility status changed from package to public if you want to be able to access
these items from outside of the package. If you have more than one class in the same file, they
will have to be separated into separate files as you can only have one public class per file. Also
the name of the package must be declared via a package specification like so package pkg; Here
is the same source file, ready to be put into a package:

// BEGIN FILE: jtw-tutorials/pkg/A.jtw

001 apackageapkg;a
002 aa

003 apublicaclassaAa

004 abegina
005 aaaapublicapropertyaintadata;a

116 CHAPTER 2. THE J.T.W. LANGUAGE

006 aa

007 aaaapublicaclassVaraintadata2a=a666;a
008 aa

009 aaaapublicaconstructorA(intadata)a
010 aaaabegina
011 aaaaaaathis.dataa=adata;a
012 aaaaenda
013 aa

014 aaaapublicamethodavoida meth1 ()a

015 aaaabegina
016 aaaaaaaSystem.out.println("meth1:" a+adata);a

017 aaaaenda
018 aa

019 aaaapublicamethodavoida meth2 ()a

020 aaaabegina
021 aaaaaaaSystem.out.println("meth2:" a+adata);a

022 aaaaenda
023 aa

024 aaaapublicafunctionavoida func ()a

025 aaaabegina
026 aaaaaaaSystem.out.println("func:" a+adata2);a

027 aaaaenda
028 aa

029 aaaabeginMaina
030 aaaaaaavaraAaa1a=anewaA(123);a

031 aaaaaaaa1.meth1();a//a PRINTSaOUT: ameth1:123a

032 aaaaaaavaraAaa2a=anewaA(456);a

033 aaaaaaaa2.meth2();a//a PRINTSaOUT: ameth2:456a

034 aaaaaaaA.func();a//a PRINTSaOUT: afunc:666a

035 aaaaendMaina
036 aenda
// END FILE: jtw-tutorials/pkg/A.jtw

Also the source file for the class needs to be moved into the folder ~/jtw-tutorials/pkg. To
run the class, you will need to invoke the Makefile command:

make build pkg/A.run

2.16.3 Moving a class into a sub-package

Suppose you want to move a class A from no package (the folder ~/jtw-tutorials) to a package
called for argument’s sake pkg.inner, the steps from the §2.16.2 needs to be followed, the only
difference being that the package spec needs to be changed to package pkg.inner; and the file
needs to be moved into the folder pkg/inner. To run the class file you need to invoke the following
Make command:

make build pkg/inner/A.run.

Here is the class definition for the file ~/jtw-tutorials/pkg/inner/A.jtw:

// BEGIN FILE: jtw-tutorials/pkg/inner/A.jtw

001 apackageapkg.inner;a
002 aa

003 apublicaclassaAa

004 abegina
005 aaaapublicapropertyaintadata;a
006 aa

007 aaaapublicaclassVaraintadata2a=a666;a
008 aa

009 aaaapublicaconstructorA(intadata)a
010 aaaabegina
011 aaaaaaathis.dataa=adata;a

2.16. PACKAGES IN JAVA AND J.T.W. 117

012 aaaaenda
013 aa

014 aaaapublicamethodavoida meth1 ()a

015 aaaabegina
016 aaaaaaaSystem.out.println("meth1:" a+adata);a

017 aaaaenda
018 aa

019 aaaapublicamethodavoida meth2 ()a

020 aaaabegina
021 aaaaaaaSystem.out.println("meth2:" a+adata);a

022 aaaaenda
023 aa

024 aaaapublicafunctionavoida func ()a

025 aaaabegina
026 aaaaaaaSystem.out.println("func:" a+adata2);a

027 aaaaenda
028 aa

029 aaaabeginMaina
030 aaaaaaavaraAaa1a=anewaA(123);a

031 aaaaaaaa1.meth1();a//a PRINTSaOUT: ameth1:123a

032 aaaaaaavaraAaa2a=anewaA(456);a

033 aaaaaaaa2.meth2();a//a PRINTSaOUT: ameth2:456a

034 aaaaaaaA.func();a//a PRINTSaOUT: afunc:666a

035 aaaaendMaina
036 aenda
// END FILE: jtw-tutorials/pkg/inner/A.jtw

2.16.4 Importing a package

When referring to a class or interface in a package you need to specify the package name in front
of every class name and interface name in the package you want to access, like so, in the main
folder ~/jtw-tutorials (outside of any package):

// BEGIN FILE: jtw-tutorials/B.jtw

001 aclassaBa

002 abegina
003 aaaabeginMaina
004 aaaaaaavarapkg.Aaa1a=anewapkg.A(123);a

005 aaaaaaaa1.meth1();a//a PRINTSaOUT: ameth1:123a

006 aaaaaaavarapkg.Aaa2a=anewapkg.A(456);a

007 aaaaaaaa2.meth2();a//a PRINTSaOUT: ameth2:456a

008 aaaaaaapkg.A.func();a//a PRINTSaOUT: afunc:666a

009 aaaaendMaina
010 aenda
// END FILE: jtw-tutorials/B.jtw

To avoid having to qualify each class name and interface name with it’s package, you need to
use the import directive like so before the definition of the class like so:

// BEGIN FILE: jtw-tutorials/B2.jtw

001 aimportapkg.*;a
002 aa

003 aclassaB2a
004 abegina
005 aaaabeginMaina
006 aaaaaaavaraAaa1a=anewaA(123);a

007 aaaaaaaa1.meth1();a//a PRINTSaOUT: ameth1:123a

008 aaaaaaavaraAaa2a=anewaA(456);a

009 aaaaaaaa2.meth2();a//a PRINTSaOUT: ameth2:456a

010 aaaaaaaA.func();aaa//a PRINTSaOUT: afunc:666a

011 aaaaendMaina

118 CHAPTER 2. THE J.T.W. LANGUAGE

012 aenda
// END FILE: jtw-tutorials/B2.jtw

2.16.5 Importing a package from another package

When referring to a class or interface in a package you need to specify the package name:
package pkg; at the top of the file before any actual code. Where the pkg package lives in a
folder called ~/jtw-tutorials/pkg.

// BEGIN FILE: jtw-tutorials/pkg/C.jtw

001 apackageapkg;a
002 aa

003 apublicaclassaCa

004 abegina
005 aaaabeginMaina
006 aaaaaaavarapkg.inner.Aaa1a=anewapkg.inner.A(123);a

007 aaaaaaaa1.meth1();a//a PRINTSaOUT: ameth1:123a

008 aaaaaaavarapkg.inner.Aaa2a=anewapkg.inner.A(456);a

009 aaaaaaaa2.meth2();a//a PRINTSaOUT: ameth2:456a

010 aaaaaaapkg.inner.A.func();a//a PRINTSaOUT: afunc:666a

011 aaaaendMaina
012 aenda
// END FILE: jtw-tutorials/pkg/C.jtw

To avoid having to qualify each class name or interface name with it’s package, you need to use
the import directive like so after the package declaration but before the definition of the class
like so:

// BEGIN FILE: jtw-tutorials/pkg/C2.jtw

001 apackageapkg;a
002 aa

003 aimportapkg.inner.*;a
004 aa

005 apublicaclassaC2a
006 abegina
007 aaaabeginMaina
008 aaaaaaavaraAaa1a=anewaA(123);a

009 aaaaaaaa1.meth1();a//a PRINTSaOUT: ameth1:123a

010 aaaaaaavaraAaa2a=anewaA(456);a

011 aaaaaaaa2.meth2();a//a PRINTSaOUT: ameth2:456a

012 aaaaaaaA.func();a//a PRINTSaOUT: afunc:666a

013 aaaaendMaina
014 aenda
// END FILE: jtw-tutorials/pkg/C2.jtw

2.16.6 Modifying the Makefile to build a class that calls other class(es)

When your class X uses another class Y then you need to add to the build target which is
initially like so:

build: clean

to what follows:

build: clean Y.java

If your class Y is in another package such as the class ~/jtw-tutorials/path/to/dir/Y.class
i.e. in the package path.to.dir then you need to add to the build target like so:

build: clean path/to/dir/Y.java

2.17. PASSWORDS FOR THE J.T.W. TUTORIAL ANSWERS 119

This process should be repeated for every class that is called, directly or indirectly from your
main class X. This process can be applied to build an entire package when you simply issue the

command make build. To actually build and run the X class, let ~/jtw-tutorials/path2/to/dir/X.class
be the location of the X class. Then you need to invoke the following Makefile target:

make build path2/to/dir/X.run

The “build” target calls the “clean” target which deletes all *.java and *.class files directly
or indirectly in the folder ~/jtw-tutorials. If you don’t do this then java might run an old
version of *.class files despite earlier errors in the build process. This is because the use of pipes
in building and executing *.class files hides the return values of the programs javac and java.

2.16.7 Running javadoc on a package

To invoke javadoc, you need to issue the following command from the folder ~/jtw-tutorials:

make build

See §2.16.6 for more information about setting up the build target. Then you need to issue the
following command from the folder ~/jtw-tutorials:

javadoc path3/to/pkg -d /path4/to/dir

where path3.to.pkg is the name of the package that you want to build and /path4/to/dir is
the desired location for your documentation files in *.html format.

2.17 Passwords for the J.T.W. tutorial answers

Here are the passwords for the tutorials, which are located at the following Website:

davin.50webs.com/J.T.W

The place to enter your passwords is Section 3 of the above Web page.

No. Password

1 policefish

2 chessweta

3 tallpencil

4 freshwhale

5 sneakermagic

6 kingpump

7 lakemarmite

8 nutriciouslamps

9 sadbutter

10 skyfresh

11 fivemagpies

12 phonesheds

13 dawnsweet

14 nightroads

15 blackscrews

16 snowfrog

17 tenflower

http://davin.50webs.com/J.T.W

120 CHAPTER 2. THE J.T.W. LANGUAGE

Chapter 3

J.T.W. Software License

s

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted
to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your freedom
to share and change the works. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change all versions of a program–to make sure it remains
free software for all its users. We, the Free Software Foundation, use the GNU General Public
License for most of our software; it applies also to any other work released this way by its authors.
You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for them if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs, and that you know you can
do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you
to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
pass on to the recipients the same freedoms that you received. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they know their
rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on
the software, and (2) offer you this License giving you legal permission to copy, distribute and/or
modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty
for this free software. For both users’ and authors’ sake, the GPL requires that modified versions
be marked as changed, so that their problems will not be attributed erroneously to authors of
previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incompatible

121

122 CHAPTER 3. J.T.W. SOFTWARE LICENSE

with the aim of protecting users’ freedom to change the software. The systematic pattern of such
abuse occurs in the area of products for individuals to use, which is precisely where it is most
unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for
those products. If such problems arise substantially in other domains, we stand ready to extend
this provision to those domains in future versions of the GPL, as needed to protect the freedom
of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in those
that do, we wish to avoid the special danger that patents applied to a free program could make
it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render
the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.
“Copyright” also means copyright-like laws that apply to other kinds of works, such as semi-

conductor masks.
“The Program” refers to any copyrightable work licensed under this License. Each licensee is

addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.
To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring

copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.
To “propagate” a work means to do anything with it that, without permission, would make

you directly or secondarily liable for infringement under applicable copyright law, except executing
it on a computer or modifying a private copy. Propagation includes copying, distribution (with
or without modification), making available to the public, and in some countries other activities as
well.

To “convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer of a
copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes
a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and
(2) tells the user that there is no warranty for the work (except to the extent that warranties are
provided), that licensees may convey the work under this License, and how to view a copy of this
License. If the interface presents a list of user commands or options, such as a menu, a prominent
item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to
it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which is not
part of that Major Component, and (b) serves only to enable use of the work with that Major
Component, or to implement a Standard Interface for which an implementation is available to

123

the public in source code form. A “Major Component”, in this context, means a major essential
component (kernel, window system, and so on) of the specific operating system (if any) on which
the executable work runs, or a compiler used to produce the work, or an object code interpreter
used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed
to generate, install, and (for an executable work) run the object code and to modify the work,
including scripts to control those activities. However, it does not include the work’s System
Libraries, or general-purpose tools or generally available free programs which are used unmodified
in performing those activities but which are not part of the work. For example, Corresponding
Source includes interface definition files associated with source files for the work, and the source
code for shared libraries and dynamically linked subprograms that the work is specifically designed
to require, such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically
from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a covered work is covered
by this License only if the output, given its content, constitutes a covered work. This License
acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others for the
sole purpose of having them make modifications exclusively for you, or provide you with facilities
for running those works, provided that you comply with the terms of this License in conveying
all material for which you do not control copyright. Those thus making or running the covered
works for you must do so exclusively on your behalf, under your direction and control, on terms
that prohibit them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention
Law.

No covered work shall be deemed part of an effective technological measure under any applicable
law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December
1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of tech-
nological measures to the extent such circumvention is effected by exercising rights under this
License with respect to the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s users, your or third parties’
legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright

124 CHAPTER 3. J.T.W. SOFTWARE LICENSE

notice; keep intact all notices stating that this License and any non-permissive terms added in
accord with section 7 apply to the code; keep intact all notices of the absence of any warranty;
and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support
or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also meet all
of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving
a relevant date.
b) The work must carry prominent notices stating that it is released under this
License and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.
c) You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.
d) If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by
their nature extensions of the covered work, and which are not combined with it such as to form
a Larger program, in or on a volume of a storage or distribution medium, is called an “aggregate”
if the compilation and its resulting copyright are not used to limit the access or legal rights of the
compilation’s users beyond what the individual works permit. Inclusion of a covered work in an
aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided
that you also convey the machine-readable Corresponding Source under the terms of this License,
in one of these ways:

125

a) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by the Corresponding Source fixed
on a durable physical medium customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by a written offer, valid for at least
three years and valid for as long as you offer spare parts or customer support for
that product model, to give anyone who possesses the object code either (1) a copy
of the Corresponding Source for all the software in the product that is covered by
this License, on a durable physical medium customarily used for software inter-
change, for a price no more than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the Corresponding Source from a
network server at no charge.
c) Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.
d) Convey the object code by offering access from a designated place (gratis or
for a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided you inform
other peers where the object code and Corresponding Source of the work are being
offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding
Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything
designed or sold for incorporation into a dwelling. In determining whether a product is a consumer
product, doubtful cases shall be resolved in favor of coverage. For a particular product received
by a particular user, “normally used” refers to a typical or common use of that class of product,
regardless of the status of the particular user or of the way in which the particular user actually
uses, or expects or is expected to use, the product. A product is a consumer product regardless
of whether the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered work in
that User Product from a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object code is in no case prevented
or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a transaction in which the right of possession and use
of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of
how the transaction is characterized), the Corresponding Source conveyed under this section must
be accompanied by the Installation Information. But this requirement does not apply if neither
you nor any third party retains the ability to install modified object code on the User Product
(for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue

126 CHAPTER 3. J.T.W. SOFTWARE LICENSE

to provide support service, warranty, or updates for a work that has been modified or installed
by the recipient, or for the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and adversely affects the operation
of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation available
to the public in source code form), and must require no special password or key for unpacking,
reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions
from one or more of its conditions. Additional permissions that are applicable to the entire
Program shall be treated as though they were included in this License, to the extent that they
are valid under applicable law. If additional permissions apply only to part of the Program, that
part may be used separately under those permissions, but the entire Program remains governed
by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written to
require their own removal in certain cases when you modify the work.) You may place addi-
tional permissions on material, added by you to a covered work, for which you have or can give
appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections
15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or author attribu-
tions in that material or in the Appropriate Legal Notices displayed by works
containing it; or
c) Prohibiting misrepresentation of the origin of that material, or requiring that
modified versions of such material be marked in reasonable ways as different from
the original version; or
d) Limiting the use for publicity purposes of names of licensors or authors of the
material; or
e) Declining to grant rights under trademark law for use of some trade names,
trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that material by anyone
who conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction, you may
remove that term. If a license document contains a further restriction but permits relicensing or
conveying under this License, you may add to a covered work material governed by the terms of
that license document, provided that the further restriction does not survive such relicensing or
conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant
source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

127

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License.
Any attempt otherwise to propagate or modify it is void, and will automatically terminate your
rights under this License (including any patent licenses granted under the third paragraph of
section 11).

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time you
have received notice of violation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, you do not qualify to receive new licenses for the same material
under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer
transmission to receive a copy likewise does not require acceptance. However, nothing other than
this License grants you permission to propagate or modify any covered work. These actions infringe
copyright if you do not accept this License. Therefore, by modifying or propagating a covered
work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the
original licensors, to run, modify and propagate that work, subject to this License. You are not
responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially
all assets of one, or subdividing an organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to that transaction who receives a
copy of the work also receives whatever licenses to the work the party’s predecessor in interest
had or could give under the previous paragraph, plus a right to possession of the Corresponding
Source of the work from the predecessor in interest, if the predecessor has it or can get it with
reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not initiate litigation (including a cross-
claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using,
selling, offering for sale, or importing the Program or any portion of it.

128 CHAPTER 3. J.T.W. SOFTWARE LICENSE

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but do
not include claims that would be infringed only as a consequence of further modification of the
contributor version. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run,
modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment,
however denominated, not to enforce a patent (such as an express permission to practice a patent
or covenant not to sue for patent infringement). To “grant” such a patent license to a party means
to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means, then
you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive
yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent license to downstream
recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license,
your conveying the covered work in a country, or your recipient’s use of the covered work in a
country, would infringe one or more identifiable patents in that country that you have reason to
believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some of
the parties receiving the covered work authorizing them to use, propagate, modify or convey a
specific copy of the covered work, then the patent license you grant is automatically extended to
all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered work if you are a party to
an arrangement with a third party that is in the business of distributing software, under which you
make payment to the third party based on the extent of your activity of conveying the work, and
under which the third party grants, to any of the parties who would receive the covered work from
you, a discriminatory patent license (a) in connection with copies of the covered work conveyed
by you (or copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other
defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict
the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot convey a covered work so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not convey it at all. For
example, if you agree to terms that obligate you to collect a royalty for further conveying from

129

those to whom you convey the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any
covered work with a work licensed under version 3 of the GNU Affero General Public License into
a single combined work, and to convey the resulting work. The terms of this License will continue
to apply to the part which is the covered work, but the special requirements of the GNU Affero
General Public License, section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU General Public License “or any later version” applies to it, you have
the option of following the terms and conditions either of that numbered version or of any later
version published by the Free Software Foundation. If the Program does not specify a version
number of the GNU General Public License, you may choose any version ever published by the
Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General
Public License can be used, that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional
obligations are imposed on any author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM

130 CHAPTER 3. J.T.W. SOFTWARE LICENSE

TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively state the exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright
(C) <year> <name of author>
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when it starts

in an interactive mode:

<program> Copyright (C) <year> <name of author> This program comes with
ABSOLUTELY NO WARRANTY; for details type ‘show w’. This is free software,
and you are welcome to redistribute it under certain conditions; type ‘show c’ for
details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for a GUI
interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more use-
ful to permit linking proprietary applications with the library. If this is what you want to
do, use the GNU Lesser General Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

Bibliography

[GRHV95] E. Gamma, R. Johnson R. Helm, and J. Vlissides, Design patterns: Elements of
reusable object-oriented software, Addison Wesley, 1995.

[Sei05] Peter Seibel, Practical common lisp, Springer-Verlag, 2005.

131

Index

.emacs file, 12

An idiom for constructors in Java and C++,
108

and, 11, 14
Arguments, 16
Arrays, 16

BASIC, 11
begin, 11
beginMain, 11
boilerplate code, 9

C++
Multiple inheritance, 110

C/C++
Variable names, 86

caMeL case, 86
Class variables, 11, 14, 16
classvar, 14
Comments, 16
Constructors, 11, 14
Converting methods to functions and vice-

versa, 16

Delphi, 11

elseif, 14
emacs-25.2-i686.zip, 12
end, 11
endMain, 11
Error

missing ends at the end of the file, 86
var needs a class name or etc., 86

File inclusion in J.T.W., 11
for construct, 16
Functions, 11, 14, 16

Getter and setter macros, 66
GNU Emacs

Installing, 12
Why use it?, 12

GNU General Public License, 119

Hello, World, 15

HOME environment variable, 12

Indentation preferences, 85
Inheritance, 17

to reduce the amount of duplication of code,
17

Installing GNU Emacs, 12

J.T.W., 11
do . . . while construct, 16
for construct, 16
superfor, 11
superfor construct, 16
while construct, 16
Arguments, 16
Comments, 16
Functions, 16
Parameters, 16
Strings, 16
System.out.println(), 16
Arrays, 16
Class variables, 14, 16
Constructors, 14
Converting methods to functions and vice-

versa, 16
File inclusion, 11, 83
Functions, 14, 16
Getter and setter methods, 17
Inheritance, 17
Instance variables, 16
Interfaces, 110
Linked lists, 17
Methods, 14, 16
Overloading methods, 16
parser, 11
Polymorphism, 17
Proofs of concept, 66

A superfor macro, 76
File inclusion, 83

Properties, 14
References, 17
Strings, 16
Swapping propertys, 16
to Java mapping, 11
Var, 14

132

INDEX 133

Variable names, 86
Java

Interfaces, 110
Squiggly brackets, 86
Variable names, 86

JavaScript, 11
jtw-build-java.el, 102
jtw-java.el, 105
jtw-javac.el, 102
jtw-mode.el, 90

Limitation of warranty, 10
Linked lists, 17
Lisp++

Parenthesis, 86

Main function, 15
main function, 11
Methods, 11, 14
My first program, running, 15

Non-object arrays, 16

O.O.P., 40
Object arrays, 16
Object-Oriented Programming, 40
or, 11, 14
Overloading methods, 16

Packages and package visibility in Java and J.T.W.,
111

Parameters, 16
Pascal, 11
Passwords for the J.T.W. tutorial answers, 117
Polymorphism, 17

rather than run-time type enquiry, 17
Properties, 11, 14
public static void main (String args), 11, 15

References, 17

Squiggly brackets, 86
Stallman, Richard Matthew (rms), 9
Star Wars, 60
Strings, 16
Super-loops in J.T.W, 76
superfor, 11
superfor construct, 16
superfor macro, 76
Swapping propertys, 16
System.out.println(), 16

then, 11, 14
Tie Fighter, 60
Tiresome repetitive “boilerplate” code, 9

Translator *.jtw to *.class, 102

var, 11, 14
Variable names, 86

Why use GNU Emacs?, 12

X-Wing, 60

Praise for my book: “Davin is bright and has a deep understanding of programming matters.”, Dr Andy Cockburn,
email: andy<at>cosc<dot>canterbury<dot>canterbury<dot>ac<dot>nz Associate Professor of the Depart-
ment of Computer Science, the University of Canterbury, Christchurch, New Zealand.

Michael Pagan, email: michael<at>pagan<at>member<dot>fsf<dot>org, said of it: “I must say, his book is
very well organised and easy to understand for a beginner like me . . .Once I get deep into this book, I’d like to
send him my comments. Java is such a great language and to have a book that covers it in such an eloquent way
while involving Emacs in the process is too much of a rarity and a delight for me to ignore.”

This book is about how to add a preprocessor to the Java language to turbo charge its performance. Both
expressiveness and efficiency can be improved using a preprocessor. The preprocessor language is called J.T.W.
which stands for Java Training Wheels and is intended to make it easier for novices to program in Java. The
suitability of Richard Stallman’s GNU Emacs text editor for hosting this preprocessor language is demonstrated
by examples. If you are especially clever, you can write your own Emacs Lisp d-defmacros to replace blocks of
tiresome repetitive “boilerplate” code in Java. A small collection of d-defmacros have been written for you to
deploy in your client code.

Davin Pearson was born in 1973 and is an ex-Computer Science tutor from the University of Canterbury, Christchurch,
New Zealand. He has three and a half years of experience tutoring Stage I Computer Science programming courses
to computer programming novices. He is probably New Zealand’s foremost exponent of GNU Emacs having used
it for 20 years (Happy Anniversary Emacs!) and having written over 55,000 lines of Emacs Lisp customisation
code some of which he has published. While on his beloved computer he enjoys listening to music of all genres and
while not on his computer he enjoys reading literature of all genres. For more information please visit his personal
Website at davin.50webs.com. Photograph c©2017 Simone Pearson.

http://davin.50webs.com

	Introduction
	The J.T.W. language
	Why learn to use J.T.W.?
	GNU Emacs as a development environment
	Why use GNU Emacs as your development environment?
	Installing GNU Emacs

	Installing the installer module for J.T.W.
	Uninstalling J.T.W.

	Introducing J.T.W. keywords
	Your first program
	Building J.T.W. into Java and running class files

	J.T.W. Tutorials
	Tutorial 1
	Tutorial 2
	Tutorial 3
	Tutorial 4
	Tutorial 5
	Tutorial 6
	Tutorial 7
	Tutorial 8
	Tutorial 9
	Tutorial 10
	Tutorial 11
	Tutorial 12
	Tutorial 13
	Tutorial 14
	Tutorial 15
	Tutorial 16
	Tutorial 17

	Proofs of concept for the J.T.W language
	Proof of concept #1: A small collection of d-defmacros for your use in client code
	Proof of concept #2: A superfor macro
	Proof of concept #3: File inclusion

	Java/J.T.W./C++ coding preferences
	Parenthesis and squigglies { … } instead of begin … end
	Troubleshooting J.T.W. code
	Mapping from J.T.W. to Java
	Choosing a preprocessor language for J.T.W.
	Piping the output of javac and java
	The GNU Makefile for building *.java files and grey*.class files

	Elisp code for editing *.jtw files
	Translator *.jtw to *.class Elisp source code
	jtw-build-java.el Elisp source code
	jtw-javac.el Elisp source code
	jtw-java.el Elisp source code

	An idiom for constructors in Java and C++
	Interfaces in Java and J.T.W.
	Packages in Java and J.T.W.
	Package visibility
	Moving a class into a package
	Moving a class into a sub-package
	Importing a package
	Importing a package from another package
	Modifying the Makefile to build a class that calls other class(es)
	Running javadoc on a package

	Passwords for the J.T.W. tutorial answers

	J.T.W. Software License

